首页 百科知识 宇宙的新观测

宇宙的新观测

时间:2022-05-13 百科知识 版权反馈
【摘要】:宇宙的新观测天文学家和天体物理学家也从19世纪继承了丰富的遗产。天文学紧紧跟上物理学和化学的步伐,对宇宙及其大小、形状和特性的认识迅速增长。在15 000英尺高处,放电的速率竟是平常在地面观测时的两倍。赫斯登上气球进行高空测量,帮助确定了宇宙射线的存在。

宇宙的新观测

天文学家和天体物理学家也从19世纪继承了丰富的遗产。改进后的望远镜使得对太阳系及更远处的观测有了更高的精确度,天文学家发现了许多小行星和海王星。天文学家还开始运用新的观测设备,照相术提高了人眼观察天空的能力,光谱学提供了大量有关远近天体所含成分的特殊新信息。

20世纪里,天文学家利用照相术、光谱学和有关辐射的新发现迅速加深加宽了人类对宇宙的认识。这些工具使他们得以进入新的探索领域、确定星体的位置和亮度、发现新的天体,并且对恒星进行分类和编目。天文学紧紧跟上物理学和化学的步伐,对宇宙及其大小、形状和特性的认识迅速增长。

宇宙射线

1910年3月10日的巴黎,春寒料峭。艾菲尔铁塔塔顶寒意阵阵。这座铁塔21年前刚刚建成,巨大的钢梁伸向几近1 000英尺的天空,这是巴黎的最高建筑了。就在这个特殊的日子里,来自荷兰法肯堡的一位耶稣会士物理教师伍尔夫神甫(Father Theodor Wulf, 1868—1946),从升降机走出来,把仪器拉到观测平台上,他不是普通的观光客。他站在远远高出战神公园的地方,运用玻璃和金属仪器,测定在此高度空气的导电性。

他的发现使大多数人感到惊奇,因为空气平常是完全不导电的。但伍尔夫是一位“放射性小组”的成员,该小组研究的是1896年贝克勒尔发现的神奇辐射。因此他认为这个问题值得研究。他知道,用静电计(这种仪器就像瓶子里的天线)可以测量辐射源的强度。当靠近铀时,静电计的金属箔片会张开,当它们向周围空气放电时,箔片又合拢。放电越快,辐射源越强。但是,伍尔夫发现,这些测量仪器有时似乎在“漏电”,即使附近没有铀块存在,也有缓慢放电。这一残余放电扰乱了数据读取,但是没有人能够避免这种情况出现。1909年,伍尔夫发明了一种高灵敏度静电计,用它更容易显示放电过程,因为它精密得多。

这一奇怪现象的根源是什么?全世界的地质学家、气象学家和物理学家都开始用伍尔夫的静电计进行试验。伍尔夫测试了德国、奥地利和瑞士阿尔卑斯高地等许多地方。残余放电似乎到处出现,但是程度有所不同。难道放射性是从地壳中逸出来的?伍尔夫爬上艾菲尔铁塔就是为了进行这项试验。在铁塔的高处,他的仪器与地壳表面相距1 000英尺,应该能够消除任何来自地球本身的放射性影响。他花了四天时间做试验,但静电计一直在放电。他的结论是,一定是“或者在大气的上方有另一辐射源,或者空气对辐射的吸收要比假设的弱得多”。

大约与此同时,来自新成立的维也纳镭学研究所的赫斯(Victor Hess,1883—1964)也加入到这场争论中。在1911年到1913年之间,他带着静电计登上气球升空,不止十次。一般的结果是,当气球上升时,放电减慢,但总是存在放电现象,而且减慢速度也不像假设辐射来自地壳所预期的那样快。赫斯的确被迷惑了。随后在第九次升空时,他注意到一种特殊的变化。在15 000英尺高处,放电的速率竟是平常在地面观测时的两倍。赫斯得出了奇异甚至怪诞的结论:“那种具有极强穿透力的射线来自大气层上空,来自最深的太空。”

起初尽管有些科学家猜想这些射线来自太空,但大多数人总觉得这一奇异的想法不可信。这似乎太离谱了。1914年6月28日,一位名叫柯尔赫斯特(Werner Kolhörster,1887—1946)的德国研究者创造了升高到30000英尺的纪录。读数表明,这个高度的电离度比海平面时上升了12倍。然而就在那一天,第一次世界大战爆发,这项试验被迫中止。但是验证已有结果。赫斯是正确的:强大的辐射连续不断地轰击我们的地球以及宇宙中的每件物体。宇宙射线最终被发现了。正是这一新认识吸引了科学家,结果就是对宇宙中的辐射有了更多的发现。

赫斯登上气球进行高空测量,帮助确定了宇宙射线的存在。

赫斯由于对宇宙射线的工作,和发现正电子的美国物理学家安德森分享了1936年诺贝尔物理学奖。正如一位科学作家所写:“当决定把诺贝尔奖荣誉授予宇宙射线领域里第一个重要工作之后,除了赫斯博士,恐怕没有任何还健在的人有资格得这个奖了。”1938年,赫斯和全家从奥地利移民到美国,在纽约接受了福特汉大学的职位。

理解宇宙

施瓦西(Karl Schwarzchild,1873—1916)于 1901年成为格丁根大学教授,他在运用照相术测量恒星,特别是变星的亮度方面,遥遥领先。他指出,周期性变星(所谓周期性 ,指的是以一定周期改变亮度或发光度)之所以表现出这一行为,是因为它的温度有周期性的变化。

施瓦西,就像所有对理解宇宙感兴趣的人一样,曾受到爱因斯坦理论的激励,他是第一位为爱因斯坦的场方程提供解答的人。他也是最早对质量密集在一点上的星体其附近的引力现象进行计算的人,这种星体后来叫做黑洞。施瓦西对黑洞边界的估计,至今仍被人们接受,这个边界就叫施瓦西半径。

理解星星

施瓦西热心普及天文学,致力于通过演讲和写作传播思想。1909年,一位业余天文学家和普及工作者赫茨普龙(Ejnar Hertzsprung, 1873—1967)能够到格丁根担任天体物理学教授,应该归功于他。赫茨普龙受的是化学工程教育,在圣彼得堡工作过两年,然后在1902年回到他的祖国丹麦,在哥本哈根作为一名业余天文学家做了许多工作。他对这样一种现象感到困惑,相距较近的星星虽然暗淡,却比遥远的亮星显得更明亮。为了补偿这一点,他提出了所谓“绝对星等”的概念,以表示恒星内禀的发光度——而不是观测者表面看上去的亮度。他发明了一种比较恒星亮度的系统,这就是把它们设想成离观测者同样的距离——10秒差距。

罗素

早在1905年,赫茨普龙还研究过恒星之间颜色和发光度的关系。他是一位天体照相术专家,曾经从照片上估计星体等级,并且精确地拍摄下了双星。但是,他的工作多年被学术界忽视。美国天文学家罗素(Henry Norris Russell, 1877—1957)宣布,他以更正规的方式独立地发现了类似结果。于是他们两人共享这一发现的荣誉,现在就称之为星体发光度的赫茨普龙-罗素图,简称赫罗图。赫罗图的目的是排列和研究关于恒星形状的数据,以便找出它们之间的关系,赫罗图至今仍然是理解恒星不同类型并在物理变量的基础上对它们进行客观比较的重要工具。

1911年,赫茨普龙发现北极星是一颗造父变星,属于脉冲变星的一种。1913年,他首次估算了某些造父变星的实际距离。这一结果,再加上勒维特(Henrietta Swan Leavitt, 1868—1921)的工作,使得夏普勒(Harlow Sharpley,1885— 1972)几年后弄清楚了我们这一星系(银河系)的形状。

看透恒星内部

20世纪初摆在天文学家面前亟待解决的重大难题之一就是如何确定恒星的内部结构。它们的内部正在进行着什么?是什么使它们发光,发出的光如此之亮,以至于穿过浩瀚的太空都能看见?为什么有许多不同的类型?爱丁顿在1926年这样解释:

“初看上去,似乎太阳和恒星的内部深处比宇宙其他地方都更难以进行科学研究……有什么仪器可以穿透恒星的外层,对其内部结构进行测试呢?

当误导的隐喻抛开后,问题看来不再那样毫无希望。‘探测’并不是我们的任务;我们知道,我们可以等待和解释天体发给我们的信息,从中获取知识。这些信息中载有恒星内部的相关情况。 引力场就是发源于恒星内部的。 ……辐射能也是来自炽热的恒星内部,经过多次偏折、转化才设法达到表面,并由此开始跨越太空的旅程。由这两条线索组成的推理链条也许是最值得信赖的,因为它(运用的)只是 自然界最普遍的规则——能量和动量守恒、概率和平均值定律、热力学第二定律原子的基本特性,等等”。

就这样,物理学和天体物理学携手并进。爱丁顿利用物理学新理论取得的进展,能够证明为什么恒星会是这样。他说,引力把星际气体往内拉,而气体的压强和辐射压又把它们向外推。他认识到,在一个稳定的恒星中,这些力是平衡的。

测量宇宙

许多世纪以来,天文学家一直在寻找测量宇宙规模的适当方法,但是直到20世纪初,这个问题仍然没有解决。1912年在哈佛天文台工作的勒维特发现了一种有效的标尺——造父变星。

第一颗造父变星是1784年被一个19岁的业余天文学家发现的,他的名字叫做古德利克(John Goodricke,1764—1786)。造父变星是这样一类恒星,它们定期在亮度上发生有规律的变化,周期通常是5至30天。这些变化就像钟表一样规律,因此相比那些变化不规则的恒星,它们更容易得到人们的认识。但是当勒维特观测小麦哲伦星系里的星星时,她发现造父变星有一种更重要的特性。她能够证明造父变星的平均发光度和周期之间存在显著的关系。这一周期—发光度关系使得天文学家有可能只要测出其周期,就可以计算出任何造父变星在任何距离的发光度。因此,勒维特认识到,很容易就可以利用这一事实测量出其他星星的距离。首先要找到一颗造父变星,测量它的周期,得到它的发光度或者绝对星等。然后测量它的视星等(它看起来有多亮),并且推出它的距离(以及附近星星的距离)。这是一个重要的突破。

勒维特

恒星光谱的分类:坎农

坎农(Annie Jump Cannon, 1863—1941)是美国一位州参议员的女儿, 曾经在韦尔斯利学院学习,1884年毕业。十年后,她回到韦尔斯利和拉德克利夫学院,对天文学做进一步研究,后来在1896年加入哈佛天文台,在那里她度过了余生。

在匹克林(E.C.Pickering,1846—1919)的指导下,哈佛天文台开始运用匹克林发明的技术对恒星光谱进行广泛研究。匹克林不是通过小棱镜同时聚焦于许多星星,而是引入一种新方法,即把大棱镜放在照相底片前面。这样一来,照片视野中的每颗星都成为一组微小的光谱而不是一个光点。用这种方法可以采集大量数据,并作统计分析

坎农为成千上万张照片发展了一种分类系统——这一系统在哈佛一直沿用了四分之三个世纪以上。她发现大多数光谱都可以排列成连续级数,在温度的基础上辫认各种恒星,从最热到最冷。这一工作成为亨利·德拉培尔星表的基础,该星表还包括对225300颗比九等或十等还要亮的恒星的分类。

由于这些工作,坎农获得了许多荣誉和奖励,1931年她成了第一位获得美国国家科学院德雷珀奖章的女性科学家。天文学家夏普勒形容该奖章为“任何性别、种族、信仰或政治倾向的天文学家所能获得的最高荣誉之一”。

坎农,照片大约拍摄于1900年。她在哈佛天文台工作时发展了光谱分类系统。

银河系的形状

与此同时,夏普勒正在研究有关宇宙的另一个基本问题:银河系的形状。夏普勒1885年生于美国密苏里州的纳什维尔,是农民的儿子。很容易想象他在孩提时代,仰望密苏里黑暗的天空观察星星的情景。他先是当了一名记者,攒了足够的钱以后在1903年进人密苏里大学,学习数学和天文学,1910年毕业。后又到普林斯顿大学深造,和天文学家罗素一起工作,1913年获得博士学位,次年成为加州威尔逊山天文台的成员。在那里他研究球状星团(globular cluster,一种稠密、球形的星团,一般都处于衰老期),开始对星团和变星作理论与观测工作,他因此而出名。利用勒维特发现的造父变星视星等和周期之间的关系,他用绝对星等(一颗恒星,如果它处于离观测者10秒差距的标准距离时它将会多亮)计算了周期-发光度关系。这就成了确定星系尺度和几何学的新标尺。

夏普勒

夏普勒发现,太阳并不是像人们所假设的那样处于银河系的中心,而是离中心大约50 000光年。如同哥白尼,他说是太阳而不是地球处于太阳系的中心,夏普勒再一次把人类及其家园驱逐出中心。他的测量还证明,宇宙要比人们以前想象的不知大多少。

在加州富有成效的8年之后,夏普勒成了哈佛天文台台长。在那里的31年中,他指导天文学计划的实现、扩充了队伍和观测设备,建立了世界级的研究生项目,后来它成为美国最好的研究生项目。

哈勃更好的标尺

就像当时许多天文学家那样,哈勃(Edwin Powell Hubble, 1889—1953)也不是从一开始就以天文学作为终生职业的。他在牛津是领罗氏奖学金的学生,1910年以法学学位毕业。尽管前程看好,但不久他就转到芝加哥大学的耶基斯天文台工作,该天文台位于威斯康星州的威廉斯湾。1917年,他从芝加哥大学获得天文学博士学位。继第一次世界大战在步兵团服役后,他来到南加利福尼亚的威尔逊山天文台任职,以后他的一生都是在这里度过。不久以后,大型2. 5米(100英寸)胡克望远镜在这里安装,给哈勃提供使用当时世界上最大的反射式望远镜的机会(这个位置,胡克曾经保持了30多年)。

以哈勃命名的望远镜

今天天文学家都知道他们应该感激哈勃,这就是哈勃太空望远镜以他名字命名的原因。哈勃望远镜是1990年发射的,其轨道高出地球表面381英里,得以避免云层和地球湍流大气的扭曲效应。这一复杂的遥控太空船虽然仅有一辆移动大货车那么大,却提供了无与伦比的宇宙视野和最远的观测范围。到了1998年,哈勃望远镜探测到的空间范围远远超过了过去。仅就其许多进展中的一项而言,它记录了宇宙最早阶段的星系图像,其时间大约可以追溯到宇宙演化过程最初5%那段时期。从许多方面来看,以哈勃命名的望远镜使得哈勃对于天文学的责献成为现实。

哈勃对一种形状模糊、像云一样的天体发生了兴趣,这种天体叫做星云——它看上去像存在于空间的雾状发光物质。1923年他的注意力集中在仙女座星云,由于它具有螺旋状臂而被称为“螺旋星云”。经过仔细观察,他成功地辨认出在其边缘的恒星。这是第一个证据,表明在银河系之外也存在恒星——证明由恒星组成的星系一定存在于离银河系很远的地方。今天已经把哈勃研究的天体命名为仙女座星系。哈勃还建立了一个星系的分类系统,这一系统至今仍在运用。

1929年,在考察星云和把星系分类的过程中,哈勃注意到星系向着地球退行的速率正比于其距离,这就叫哈勃定律。这一工作被认为是20世纪天体物理学最有意义的突破之一。

哈勃运用这一测量结果,估计可知宇宙(我们能够研究的部分)的半径大概是130亿光年,直径就为260亿光年。这是一把巨大的标尺,甚至比勒维特的造父变星好用得多。现在天文学家在他们的探索中已有更多的工具,可以帮助他们理解宇宙的特性和宇宙的巨大。

哈勃

德西特的膨胀宇宙

与此同时,荷兰天文学家德西特(Willem de Sitter, 1872—1934),受爱因斯坦广义相对论的启发,开始探讨宇宙的结构。1919年他提出这一设想:假设整个宇宙处于低密度质量状态,可能宇宙最初是没有质量的。这也许是对宇宙膨胀论最早的暗示之一,大爆炸理论的前提之一就是宇宙膨胀论,而大爆炸理论是当今关于宇宙起源和最早阶段的主导理论。德西特是莱顿大学有影响的天文学教授,他把自己的发现向英国的爱丁顿报告,从而激起了人们对爱因斯坦相对论的兴趣,由此引起的广泛关注又鼓励爱丁顿发起探险,在1919年 日食时检验广义相对论的预言。

德西特对爱因斯坦的宇宙观添加了两个重要的见解。他说,由于光线会被引力弯折,于是,任何光线经过一再弯曲,最终则会回到出发点。由此德西特认为,宇宙就是由“弯曲的空间”组成的。爱因斯坦把宇宙看成是弯曲的空间,但却是静止的。而德西特对之作出了不同的解释。他看到随着曲率逐渐变小,弯曲的宇宙就会不断向外膨胀。哈勃已经解释过的遥远星系的光谱肯定了这一点。1932年,德西特和爱因斯坦合作研究他们的宇宙理论,为宇宙创建了一个模型,人称爱因斯坦-德西特模型。他们的理论第一次预言宇宙中有大量暗物质存在,一种无法探测到的物质形式,它没有辐射。

和物理学一样,天文学在20世纪初为后半世纪的巨大进展做好了准备。在天文学和天体物理学领域,正如物理学,科学家都在发展新工具,都在寻找收集数据、测量数据和解释数据的新方法。他们开始越来越多地使用照相术和恒星光谱收集数据,设计新的分类系统并作出解释,对于日趋复杂化的观察事实有了更为深刻的见解。在这一过程中,无论是对专业人士还是普通人,他们的工作都变得越来越有魅力。宇宙的广阔天地正成为一个越来越有吸引力的领域。

德西特(右立者)和他的物理学家同事们(顺时针):洛伦兹(坐着)、爱丁顿、爱因斯坦和艾伦菲斯特。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈