首页 理论教育 基因会变吗

基因会变吗

时间:2022-02-14 理论教育 版权反馈
【摘要】:基因会变吗毋庸置疑,基因肯定是会变的。基因突变可以是自然发生,也可以是人工诱导所致。基因的变化称为基因突变。缪勒与突变基因通常说突变是自发产生的时候,并不是说突变是无缘无故发生的,而是指未经人为干预而自然发生的。世界上第一个试管婴儿缪勒一生发表论文372篇,出版专著《单基因改变所致的变异》,并参与由摩尔根主编的《孟德尔遗传机制》的编写。
基因会变吗_从摩尔根谈遗传基

基因会变吗

毋庸置疑,基因肯定是会变的。基因突变可以是自然发生,也可以是人工诱导所致。因为自发突变频率很低,人工诱变就显得非常重要。摩尔根的学生缪勒取得了突破性进展,不仅是人工诱变的创始人,也是第一位成功的诱变育种家。

短腿羊的出现

1791年,在美国新英格兰的一户农民赛斯·怀特家的羊群里,发现了一只背长腿短且略弯曲的雄绵羊。由于腿短,它跳不过羊圈篱笆,故而易于圈养。经过怀特的精心选育,一个新的绵羊品种——安康羊产生了。达尔文对此很感兴趣,曾将该例收录在他的著作《动物和植物在家养下的变异》一书中。但安康羊在1870年左右绝种了。这种短腿羊,最初是在其亲代的生殖细胞中的基因产生了变化而导致的。基因的变化称为基因突变。大约在1920年左右,挪威一户农民的羊群里,又突然出现了一只短腿羊,这是因为又新产生了一次基因突变。由此又重新育成了一个短腿绵羊的新品种。

img60

短腿羊

突变这个概念和术语最初是由荷兰植物学家、孟德尔定律的重新发现者之一德·弗里斯在1901年提出来的,当时他把在月见草中观察到的偶然出现的、巨大的、可遗传的变化称为突变。后来知道,德弗里斯在月见草中观察到的“突变”是染色体畸变而非基因突变。但由于突变概念的提出,使人们将遗传物质的变异引起的可遗传性变异与生物体对环境条件变化引起的不可遗传的变异严格区分开来。当然,最早区分可遗传的变异与不遗传变异的,应该追溯到魏斯曼。魏斯曼1885年提出“种质学说”时,就曾明确区分可遗传的种质变异与不遗传的体质变异。

缪勒与突变基因

通常说突变是自发产生的时候,并不是说突变是无缘无故发生的,而是指未经人为干预而自然发生的。突变发生肯定有原因,只是原因不明,或者说我们没有去深究。有时是我们不感兴趣,有时甚至是没有必要去深究。然而,自发突变是一种频率很低的突变,仅靠自发突变无异于守株待兔。科学的发展不能等待大自然恩赐,科学研究需要新的突变,必须想办法使之容易得到,使研究工作的效率提高。在这方面取得突破性进展的是缪勒——摩尔根的学生、得力助手和传人。

img61

氨基酸

缪勒祖籍德国,1890年12月21日生于美国纽约市,1967年4月5日卒于美国印第安纳波利斯。1907年缪勒考入哥伦比亚大学,1910年毕业,获学士学位。在大学期间,曾认真阅读洛克的《遗传、变异和进化》,并进修威尔逊讲授的染色体遗传学。大学毕业后在康内尔医学院和哥伦比亚大学生理学系深造,1912年获硕士学位。同年,被摩尔根招为研究生,在摩尔根的实验室里攻读博士,1916年取得博士学位。1916~1918年受生物学家赫胥黎的邀请,到休斯敦水稻研究所讲学。1918~1920年缪勒回哥伦比亚大学继续从事遗传突变研究。1921~1932年,在得克萨斯大学任教并成为教授。1932年,缪勒曾去柏林,并遭法西斯当局逮捕,后经营救获释,应苏联遗传学家瓦维洛夫之邀请去苏联。1933~1937年在列宁格勒和莫斯科科学院工作,曾卷入到与李森科争论的纠纷中,为此他离开了苏联,并参加了西班牙志愿军。1938年缪勒到了英国,在爱丁堡大学任教,直至1940年。其后便回到美国,先在阿默斯特学院任教,1945年转到印第安纳大学,直至去世。

img62

世界上第一个试管婴儿

缪勒一生发表论文372篇,出版专著《单基因改变所致的变异》,并参与由摩尔根主编的《孟德尔遗传机制》的编写。缪勒是辐射遗传学的创始人,并因此而荣获1946年诺贝尔生理学及医学奖。由他建立的检测突变的CIB方法至今仍是生物监测的手段之一。

1927年,缪勒在《科学》杂志发表了题为《基因的人工蜕变》的论文,首次证实X射线在诱发突变中的作用,搞清了诱变剂剂量与突变率的关系,为诱变育种奠定了理论基础。具体来说,缪勒解决了如下几个问题:

一、用较高剂量的X射线处理精子,能诱发生殖细胞发生真正的基因突变。所谓真正的基因突变,是从两个角度表现出来的,一是具有物质性质的基因发生了变化,而不是像德弗里斯在月见草中发现的染色体畸变;二是变化了的基因能真实遗传,经过了4代或4代以上的稳定遗传,并且大多数表现出典型的孟德尔遗传方式。

img63

果蝇的连锁遗传图解

二、在用X射线处理果蝇的同时,再以数千个未经处理的果蝇作为对照。在同样的培养条件下,受高剂量X射线处理的果蝇之突变率比未受处理的果蝇之突变率高出约150倍。用X射线处理,在短时间内即得到了几百个突变体,经过几代培育已发现100个以上的突变基因。

三、突变类型包括致死突变、半致死突变、非致死突变。致死突变又可分为隐性致死突变和显性致死突变。其中显性致死突变是大量的,可通过卵的计数和其对性比率的影响看出,有不少诱发的可见突变,是在过去从未看到的基因座位上发生的,而其中有些突变的表型效应与以往看到的并不完全相似。但大多数突变是过去已经发现过的,如白眼、小翅、带叉的刚毛等。这说明X射线诱发的变异大多数与自发突变中出现的基因突变完全相同,只是后者出现的频率要低得多。

img64

转基因生物的安全性

四、除基因突变外,X射线也能造成基因在染色体上的次序重新排列,且这种情况占有很高的比例;还能造成较大片段的染色体畸变,如缺失、断裂、易位、倒位等。

五、X射线处理并非是使该染色体上存在的全部基因物质都发生永久性的改变,常常只影响到其中一部分。受处理的基因复制产生两个或两个以上的子代基因,往往只有其中一个发生突变,似乎表现出某种滞后效应。

六、X射线处理并未显著提高回复突变率。这说明诱变的发生也是随机的,诱变剂并不对已发生突变的基因青睐有加。

七、用不同剂量的X射线,在生命周期的不同时刻和不同条件下处理果蝇,将得到不同的结果。缪勒的工作表明,在使用剂量的范围内,隐性致死因子并不直接随所吸收的X射线的能量而变化,而是更接近于随能量的平方根变化。

1945年,美国在日本长崎广岛投下了尚处于初级研究阶段的核武器——原子弹。原子弹的巨大爆炸威力和大规模杀伤效应,给人们以非常深刻的印象。然而,原子弹的受害者仅仅是死伤吗?不死不伤的人难道一点也未受到影响吗?在此之前,人们与放射性物质打交道已有40余年,但对其生物学效应、特别是遗传学效应几乎一无所知。缪勒则在他的论文中明确指出:“现代X射线治疗常用的照射处理实践肯定不会造成永久性的不孕,这主要是站在一种纯粹理论性的概念上来防护的,这种理论概念为孕性恢复后产生的卵必定代表‘未受损伤’的组织……这个假设在这里被证明是错误的……”缪勒由于1927年的工作而于1946年获诺贝尔生理学医学奖,这标志着人类对诱变的认识已趋成熟。随后,“原子时代的遗传学”、“辐射遗传学”成为热点。其它物理或化学诱变剂逐一被发现及研究。为了维护人类健康,检测致畸、致癌、致突变环境因素的工作日益受到重视。

诱变在应用方面的发展

诱变操作其实很简单,即用诱变剂直接或间接地处理生殖细胞。对细菌等生物而言,没有体细胞与生殖细胞的区别,处理起来就更容易了。

诱变剂大致可分为两类。像射线、紫外线激光等物理因素称为物理诱变剂,用于诱变的射线有:X射线、α射线、β射线、γ射线和中子射线等。而亚硝胺、芥子气之类的化学药物则称为化学诱变剂。

img65

骨的基本结构

诱变的目的是为了得到新的突变。在摩尔根时代,遗传学研究内容的丰富与新突变的发现息息相关。现在,遗传学研究的内容和手段与过去相比早已面目全非了,但获得新突变并从中选出对人类有利的突变型仍然是热点之一。培育新品种的方法现在已有许多新手段,如应用分子生物学技术培育转基因动植物等,但诱变育种仍不失为简便易行的常用手段。

缪勒不仅是人工诱变的创始人,也是第一位成功的诱变育种家。其实,他培育的CIB果蝇品系就是一个非常有用的果蝇新品种。20世纪30年代,瑞典的古斯塔夫松、和哈格贝里等就开始致力于诱变育种工作,并取得了较大成就。到50年代,瑞典已成为世界放射诱变育种研究的中心。60~70年代,诱变育种工作已成燎原之势,经诱变而得到的新品种已数不胜数。

我国在60年代初开始诱变育种工作,进入80年代后,诱变育种工作与我国其它行业一样进入了鼎盛时期。诱变育种的成果主要体现在作物育种和微生物育种两方面。作物育种,目标致力于早熟、抗病、高产、优质。这些目标并不是一下子就能达到的,特别是与某些品质有一定的相关性,如早熟的难以高产,高产的不早熟,这就须一步步地进行。可以用具有某种优良品质的品种作基础,通过诱变,从中选出保持该优秀品质并出现新的优良品质的突变体。如浙江培育的早熟水稻“原丰早”,就是以“科字6号”为基础,经诱变选择而育成的。“原丰早”穗大粒多,耐肥抗倒,保留了“科字6号”的丰产品质,但比后者早熟45天,从而产量比成熟期相同的其它品种高一成以上。“原丰早”还有适应性广、早晚季均可种植、二熟制或三熟制都能适应的优点。这类例子举不胜举,如湖北育成的“鄂麦6号”、山东育成的“鲁棉1号”、黑龙江育成的“黑农16号”大豆、广东育成的“狮选64号”花生等,都是应用诱变而培育成功的。

img66

染色体

微生物育种,目标在于获得高产菌株。许多生化药物如核苷酸、酶制剂、氨基酸、抗生素等,常常用微生物发酵法来进行工业化生产。由于许多生化成分在生物组织中的含量较低、提取较为困难,所以这类药物价格极昂贵。如果某种微生物代谢途径改变,能累积这类成分,那么即可利用这种微生物来大量生产药物。工业化生产的最大优点是能大幅度降低药物的生产成本,而诱变育种可以逐渐提高药物产量,从而进一步降低成本。在我国许多生化制药厂的抗生素生产车间里,都有着一批专门从事菌种培育的技术人员。正是由于他们的辛勤劳动,才使得各地的生产水平逐年提高。通过诱变育种,使药物产量逐渐提高成千上万倍的例子屡见不鲜。

基因鉴定技术

DNA鉴定技术是英国遗传学家杰弗里斯在1984年发明的。DNA鉴定技术除了可鉴定个人身份外,在鉴定亲属关系上也很有效。人体细胞有总数约为30亿个碱基对的DNA,每个人的DNA都不完全相同,人与人之间不同的碱基对数目达几百万之多,因此通过分子生物学方法显示的DNA图谱也因人而异,由此可以识别不同的人。所谓“DNA指纹”,就是把DNA作为像指纹那样的独特特征来识别不同的人。由于DNA是遗传物质,因此通过对DNA鉴定还可以判断两个人之间的亲缘关系。由于人体各部位的细胞都有相同的DNA,因此可以通过检查血迹、毛发、唾液等判明身份。

img67

DNA的化学组成

2000年,我国河南省郑州市首次颁发DNA身份证。这张特殊的身份证表面印有持有者的姓名、年龄、性别、出生年月、血型、身份证号、照片等,但它的奥秘和价值所在是下方的一长排条文形码。个人的遗传基因秘密就藏在这些条码中,显示持有者存在的唯一性。拥有者将真正与世界上其他60亿人口区分开来。DNA身份证在人体器官移植输血、耐药基因的认定和干细胞移植方面都有非常大的作用。

用DNA鉴定身份的技术在阿根廷内战期间也起到了重要作用。战争让许多孩子失去了父母。战争结束后,政府希望把这些孩子们交付给他们的亲戚,使他们回到亲人的怀抱。可是怎样使他们没见过面的亲戚相信孩子是自己的亲属呢?科学家采用DNA鉴定技术,将孩子血液中的DNA与可能是他们亲戚的DNA相比较,结果至少帮助50多个孩子找到了亲人。现在这种技术,已经广泛被各国采用了。

近一个世纪以来,指纹技术给侦破工作带来很大方便。但罪犯越来越狡猾,许多作案现场没有留下指纹。现在有了DNA指纹鉴定技术,只要罪犯在案发现场留下任何与身体有关的东西,例如血迹和毛发,警方就可以根据这些蛛丝马迹将其擒获,准确率非常高。DNA鉴定技术在破获强奸和暴力犯罪时特别有效,因为在此类案件中,罪犯很容易留下包含DNA信息的罪证。

根据DNA指纹破案虽然准确率高,但也有出错的可能,因为两个人的DNA指纹在测试的区域内有完全吻合的可能。因此在2000年英国将DNA指纹测试扩展到10个区域,使偶然吻合的危险几率降到十亿分之一。即使这样,出错的可能性仍未排除。

基因疗法

基因疗法是通过基因水平的操作来治疗疾病的方法。基因是“生命的设计图”,当基因因为突变、缺失、转移或是不正常的扩增而“出错”时,细胞制造出来的蛋白质数量或是形态就会出现问题,人体也就生病了。所以要治疗这种疾病最根本的方法,就是找出基因发生“错误”的地方和原因,把它矫正回来,疾病自然就会痊愈了。

img68

近端着丝粒和端着丝粒染色体

目前的基因疗法是先从患者身上取出一些细胞,然后利用对人体无害的逆转录病毒当载体,把正常的基因嫁接到病毒上,再用这些病毒去感染取出的人体细胞,让它们把正常基因插进细胞的染色体中,使人体细胞就可以“获得”正常的基因,以取代原有的异常基因;接着把这些修复好的细胞培养、繁殖到一定的数量后,送回患者体内,这些细胞就会发挥“医生”的功能,把疾病治好了。

美国医学家安德森等人对腺甘脱氨酶缺乏症的基因治疗,是世界上第一个基因治疗成功的范例。

1990年9月14日,安德森对一例患ADA缺乏症的4岁女孩进行基因治疗。这个4岁女孩由于遗传基因有缺陷,自身不能生产ADA,先天性免疫功能不全,只能生活在无菌的隔离帐里。他们将含有这个女孩自己的白血球的溶液输入她左臂的一条静脉血管中,这种白血球都已经改造过,有缺陷的基因已经被健康的基因所替代。在以后的10个月内她又接受了7次这样的治疗,同时也接受酶治疗。1991年1月,另一名患同样病的女孩也接受了同样的治疗。两患儿经治疗后,免疫功能日趋健全,能够走出隔离帐,过上了正常人的生活,并进入普通小学上学。

继安德森之后,法国巴黎奈克儿童医院的费舍尔博士与卡波博士也对两例先天性免疫功能不全的患儿成功地进行了基因治疗。

尽管目前只有极少数的基因疗法开始在临床试用,大多数还处于研究阶段,但它的潜力极大、发展前景广阔。

基因工程药物

生物工程技术的诞生与应用不仅改变了我们的生活而且还让我们的生活多姿多彩。

1977年,美国加利福尼大学的遗传学家博耶等人,用基因重组技术,在大肠杆菌中制造出5毫克的人生长激素抑制因子。如果用传统的办法从羊脑中提取5毫克生长激素抑制因子,那就要有50万个羊脑。这是基因工程应用的一大胜利。

img69

红细胞

糖尿病是患者胰腺不能正常分泌胰岛素,引起血糖过高而至,其死亡率仅次于癌症和心脏病。全世界的糖尿病患者已达数千万人。20世纪初,医生们就采用胰岛素治疗糖尿病。但胰岛素以往主要靠从牛、猪等大牲畜的胰脏中提取,一头牛的胰脏或一头猪的胰脏只能产生30毫升的胰岛素,而一个病人每天则需要4毫升的胰岛素,胰岛素产量远远不能满足需要。

1978年,美国化学家吉尔伯特领导的研究小组,利用重组DNA技术成功地使大肠杆菌生产出胰岛素。

为基因重组技术商业化而建立的第一家公司是南旧金山的一家名叫杰纳泰克的公司。该公司是由博耶和企业家R.斯旺森创办的,该公司能够大量生产人体胰岛素。1982年,用基因技术生产的胰岛素产品获得批准并投入使用。

干扰素是两位美国科学家在1957研究病毒的干扰现象时发现的一种抗病毒的特效药,能战胜病毒引起的感染,如水痘、肝炎和狂犬病等。干扰素本是我们身体内部少数几种能抵御病毒的天然防御物质之一,是在病毒入侵细胞以后从仍然健康的细胞中自然产生的。但人体内产生的干扰素数量非常小,所以当时生产的干扰素数量很少而十分昂贵。

img70

人染色体的组型

1980年,由美国生物化学家博耶和科恩创建的基因工程公司,通过各种不同基因组合得到几种生产干扰素的细菌。1981年,又用酵母菌生产干扰素获得成功。过去,用白细胞生产干扰素,每个细胞最多只能产生100~1000个干扰素分子;而用基因工程技术改造的大肠杆菌发酵生产,在1~2天内,每个菌体能产生20万个干扰素分子。现在,美国已经采用基因工程来大规模工业化生产干扰素。

中国在1982年已用基因工程方法组建了生产干扰素的大肠杆菌新菌种,它产生的干扰素跟天然干扰素一样具有抗病毒活性。同年,复旦大学遗传研究所获得人干扰素基因克隆的酵母菌株。1983年建立了人甲种干扰素基因工程无性繁殖系,并用于生产。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈