首页 理论教育 植物器官介绍

植物器官介绍

时间:2022-02-09 理论教育 版权反馈
【摘要】:主根 大多数裸子植物和双子叶植物的主根继续生长,明显而发达。由主根及各级侧根组成的根系,称为直根系。热带森林中的许多兰科植物也有发达的气生根。豆科植物与根瘤细菌的共生体,即为根瘤。
植物器官介绍_植物世界的春天

第二节 植物器官介绍

一般说来,植物具有六大器官:根、茎、叶、花、果实、种子,其中,根、茎、叶主要提供植物所需的营养;花、果实、种子的作用是进行繁殖。

一、根(root)

植物的地下部分,主要起固着和吸收作用,同时还有合成和贮藏有机物质以及进行营养繁殖的功能。

根上不生长叶和花,它虽然和茎一样有分枝,但分枝(侧根)来源不同。藻类和苔藓植物没有根,蕨类植物中最原始的松叶蕨、梅西蕨和古代最早的陆生化石莱尼蕨也没有真正的根,只在地下的根状茎上有具吸收功能的假根;大多数现存的蕨类植物、裸子植物和被子植物才有真正根的结构。

根系 一株植物全部根的总称。种子萌发后,由胚根发育的根,称为主根。

主根 大多数裸子植物和双子叶植物的主根继续生长,明显而发达。由主根及各级侧根组成的根系,称为直根系。单子叶植物的主根在生长一个短时期后,即停止生长而枯萎,并由茎基部节上产生大量不定根,这些不定根也能继续发育,形成分枝,整个根系形如须状,故称须根系。大多数蕨类植物的根系,也是由不定根所组成,这些不定根从茎、根状茎发育而来。

须根 根系在土壤中伸展的范围及根量的多少,与植物种类和外界环境,如土壤的结构、通气程度以及水分状况等有关。一般直根系伸入土壤的深度,大于须根系。大多数木本植物的主根深达10—20米,某些生长在干旱沙漠地区的植物,如骆驼刺的根系可伸入土层达20米之多。禾本科植物的须根系入土较浅,一般仅20—30厘米。木本植物根系在土壤中的伸延范围,直径可达10—18米,常超过树冠的好几倍;草本植物如南瓜为6—8米;禾谷类植物仅40—60厘米。

俗话说的“根深叶茂”、“本固枝荣”等,都说明植物地下部分的根系,与地上部分的茎、叶等器官的生长密切相关。在农业生产上,常用控制水、肥及光照强度来调整作物的根冠比(即根系的干重或鲜重与地上部分的干重或鲜重之比),以达到作物丰产的目的。

根的变态

有些植物的根,在形态、结构和生理功能上,都出现了很大的变化,这种变化称为变态。变态是长期适应环境的结果,这种特性形成后,相继遗传,成为稳定的遗传性状。常见的变态根有:

img1

萝卜

肉质根 如萝卜、胡萝卜、甜菜的变态根。它们是由主根以及胚轴的上端等部分膨大形成,在肥大的主根中,薄壁组织细胞内贮存大量养料,可供植物越冬和次年生长之用。这部分也是食用的部分。

块根 植物侧根或不定根膨大而成。这种变态根不像萝卜等,每株只形成一个肉质根,而是一株可以形成许多膨大的块根。常见的如甘薯的块根。

img2

红薯

气生根 是生长在空气中的一种变态根,如榕树的枝干上长出许多不定根,可以一直垂入到土壤。此种气生根没有根毛和根冠,不能吸收养分,但能吸收空气中的水分,也有呼吸的功能。由于气生根扎入土内起了支持作用,使榕树树冠得以发展,故有“独木成林”之感。热带森林中的许多兰科植物也有发达的气生根。气生根因作用不同,又可分为呼吸根、支柱根、攀缘根和吸器。

一些生活在沼泽、海滩的植物,其地下部分生活在缺氧环境中,如落羽杉和海桑树等,在树的主干附近,从土壤或水中伸出许多根来,这些根的结构特殊,内部有许多气道,这些根主要是起呼吸和通气作用,故有呼吸根或通气根之称。

img3

高山榕

支柱根 最典型的例子是玉米,从茎基部的几个节上长出许多不定根,并向下伸入土中,不仅能吸收水分和无机盐,而且此种根的机械组织发达,能起到稳固茎干的支持作用。

常春藤和凌霄花等植物的细长茎上,生有无数不定根,并以其将自身固定在墙壁或其他植物茎干上,这类变态根叫做攀缘根。

寄生生活的被子植物,如菟丝子,它的茎缠绕在寄主的茎上,并生出许多吸器,吸器伸入寄主茎的内部组织,它们的维管组织与寄主的维管组织相连接,以此可吸收寄主的水分和养料。

菌根和根瘤 许多植物的根系与土壤中的微生物建立了共生关系,在植物体上形成菌根或根瘤。某些种子植物的根与土壤真菌共生所形成的共生体,称为菌根。根据真菌对寄主皮层细胞浸染的情况,又分为外生菌根和内生菌根两种类型。外生菌根,真菌形成一鞘层,即菌丝罩,整个包裹着幼根的外部,只有少数菌丝侵入到根皮层的细胞间隙中,如松树、栎树等。内生菌根,真菌形成不明显的罩子,而大部分菌丝均侵入到根部皮层的细胞内部,如兰属、草莓等。菌根真菌的菌丝如同根毛一样,起吸收水分与矿质营养的作用。还能将土壤中的矿质盐和有机物质,转变为易于寄主吸收的营养物质以及可制造维生素等,供给根系。而寄主植物分泌的糖类、氨基酸及其他有机物质又可供真菌生活,因此两者为共生关系。

豆科植物与根瘤细菌的共生体,即为根瘤。根瘤的维管束与根的维管柱连接,两者可互通营养,一方面豆科植物将水分及营养物质供给根瘤细菌的生长;另一方面根瘤细菌也将固定合成的铵态氮,通过输导组织运送给寄主植物。

生理功能

根不仅是一个吸收水分与矿质盐的主要器官,而且也是一个转化和合成营养的地方,代谢活动异常活跃。

根对水分的吸收 根系从土壤中吸收水分的最活跃部位,是根端的根毛区。通常仅由根系的活动而引起的吸水现象,称为主动吸水,而把由地上部分的蒸腾作用所产生的吸水过程,称为被动吸水。

根对矿质营养的吸收 根系从土壤中吸收矿物质是一个主动的生理过程,它与水分的吸收之间,各自保持着相对的独立性。根部吸收矿质元素最活跃的区域是根冠与顶端分生组织,以及根毛发生区。土壤中的各种离子先吸附在根表面,然后经能量转换与酶的作用,通过细胞膜进入细胞中,再由细胞间的离子交换、进入维管柱的木质部导管。

根对地上部分生长发育的影响 根系不仅将植物的地上部分牢固地固着在土壤中,从土壤吸收大量水分和矿质营养,供给地上部分生长发育的需要,而且根部还能进行一系列有机化合物的合成转化。其中包括有组成蛋白质的氨基酸,如谷氨酸、天门冬氨酸和脯氨酸等;各类植物激素,如吲哚醋酸细胞分裂素类,以及少量的乙烯等。根还能从土壤中吸收二氧化碳并固定,借助于特种酶和丙酮酸的作用,转变为苹果酸,然后转运到地上部分,参加叶子的光合作用。

二、茎(stem)

植物地上部分的骨干,上面着生叶、花和果实。它具有输导营养物质和水分,以及支持叶、花和果实在一定空间的作用。有的茎还具有光合作用、贮藏营养物质和繁殖的功能。

形态

茎上着生叶的位置叫节,两节之间的部分叫节间。茎顶端和节上叶腋处都生有芽,当叶子脱落后,节上留有痕迹叫做叶痕。这些茎的形态特征可与根相区别。

大多数种子植物茎的外形为圆柱形,也有少数植物的茎有其他形状,如莎草科植物的茎呈三角柱形,唇形科植物茎为方柱形,有些仙人掌科植物的茎为扁圆形或多角柱形。在木本植物茎的外形上,还可以看到芽鳞痕,可以看出树苗或枝条每年芽发展时芽鳞脱落的痕迹,从而可以计算出树苗或枝条的年龄。

生长方式

不同植物的茎在适应外界环境上,有各自的生长方式,使叶能在空间展开,获得充分阳光,制造营养物质,并完成繁殖后代的作用,产生了以下4种主要的类型。

直立茎 大多数植物的茎直立向上生长,如松、柏、杨、柳等。

缠绕茎 幼小时期较为柔软,不能直立,用茎干缠绕于支持物上升。各类植物有一定的缠绕方向,有的是左旋,即依反时针方向旋转,如菜豆、牵牛花、茑萝、马兜铃等;有的是右旋,即依顺时针方向旋转,如忍冬、葎草等。此外,有的植物的茎既可左旋,也可右旋,称为中性缠绕茎,如何首乌的茎。

攀援茎 茎幼小时较为柔软,不能直立,以特有的结构攀援支持物上升。按攀援结构的性质,又可分为5种;以卷须攀援,如南瓜、豌豆、葡萄的茎;以气生根攀援,如常春藤、洛石、薜荔的茎;以叶柄攀援,如旱金莲、铁线莲的茎;以钩刺攀援,如白藤、猪殃殃的茎;以吸盘攀援,如爬山虎的茎。

img4

两色乌头

img5

小牵牛

有缠绕茎和攀援茎的植物统称藤本植物。热带、亚热带森林里藤本植物特别茂盛,形成森林内的特有景观。

匍匐茎 茎细长,而又柔弱,蔓延生长在地面上,如甘薯、草莓等的茎。

分枝类型

茎的分枝是普遍现象,能够增加植物的体积,充分地利用阳光和外界物质,有利繁殖新后代。各种植物分枝有一定规律。

二叉分枝 这是比较原始的分枝方式,分枝时顶端分生组织平分为两半,每半各形成一小枝,并且在一定时候又进行同样的分枝,因此这种分枝统称二叉分枝。苔藓植物和蕨类植物具这种分枝方式。

单轴分枝 顶芽不断向上生长,成为粗壮主干,各级分枝由下向上依次细短,树冠呈尖塔形。多见于裸子植物,如松杉类的柏、杉、水杉、银杉;以及部分被子植物,如杨山毛榉等。

合轴分枝 茎在生长中,顶芽生长迟缓,或者很早枯萎,或者为花芽,顶芽下面的腋芽迅速开展,代替顶芽的作用,如此反复交替进行,成为主干。这种主干是由许多腋芽发育的侧枝组成,称为合轴分枝。合轴分枝的植株,树冠开阔,枝叶茂盛,有利接受充分阳光,是一种较进化的分枝类型。大多见于被子植物,如桃、李、苹果、马铃薯番茄无花果、桉树等。

假二叉分枝 叶对生的植株,顶端很早停止生长,成为两个。开花以后,顶芽下面的两个侧芽同时迅速发育成两个侧枝,很像是两个叉状的分枝,称为假二叉分枝。这种分枝,实际上是合轴分枝的变型,与真正的二叉分枝有根本区别。假二叉分枝多见于被子植物木犀科、石竹科,如丁香、茉莉、石竹等。

茎的类型

茎的类型与植物的生活期长短有关系。

寿命长的植物,茎里有维管形成层,能够形成坚硬的木质部,增强茎的坚固性,这类植物就是乔木或灌木。乔木的特性在于茎为粗大的主干。灌木的特性,在于离地面处同时有粗细相似的分枝,分不出主干。

寿命短的植物,只在茎的基部有少量木质部,因此茎干软弱,这就是草本植物。草本植物的茎有多种类型:灌木状草本植物茎的上部是草本的,下部是木本的。一到冬季,草本部分全部死亡,如艾属、金丝桃属。多年生草本植物具极短的木质化的茎,从而连续多年产生新的草本茎,如大丽菊、百合、桔梗。二年生草本植物仅能生活两年,茎基部能越冬,从而在第二年春季再生直立草本的茎,开花结果后全株死亡,如萝卜、胡萝卜、甜菜。一年生草本植物只能生活一个生长季,在短期内开花结果,完成生活史,全株死亡,如荠菜、玉米、水稻

img6

珍珠绣线菊

茎的变态

植物在长期系统发育的过程中,由于环境变迁,引起器官形成某些特殊适应,以致形态结构发生改变,叫做变态。茎的变态,有两种发展趋向:变态部分有的特别发达,有的却格外退化。不过无论发达或退化,变态部分都保存茎特有的形态特征。变态茎可分为两大类型:地下变态茎和地上变态茎。

地下变态茎 变态茎生长在地下,总称地下茎,共有4种类型:

根状茎 像根一样横卧在地下。莲的地下茎又称藕,节特别细,节间粗大,可供食用。狗牙根、白茅是常见的田间杂草,根状茎繁殖力很强。

img7

拳参

块茎 顶部肥大,有发达的薄壁组织,贮藏丰富的营养物质,如马铃薯块茎具螺旋排列的腋芽;菊芋(洋姜)、半夏、甘露子(草石蚕)等都有块茎。

球茎 变态部分膨大成球形、扁圆形或长圆形,有明显的节和节间,有较大的顶芽,荸荠、慈姑、芋的变态茎都是球茎。

鳞茎 变态茎极短,呈盘状,其上着生肥厚的鳞片状鳞片叶,营养物质贮藏在鳞片叶里,如洋葱、水仙。

地上变态茎 地上的变态茎,多是茎的分枝的变态。有4种类型:

img8

珊瑚藤

卷须 地上枝的变态,多见于藤本植物,缠绕于支柱物上,牵引植物向上攀援生长。

茎刺 分枝或芽的变态,其中的维管组织相连,所以与皮刺不同,如皂荚。

叶状茎 茎扁化成叶状,但有明显的节和节间,叶片退化,如竹节蓼、假叶树、天门冬等。

肉质茎 茎绿色,肥大多浆液,薄壁组织特别发达,适于贮藏水分,并进行光合作用。叶片高度退化或成刺状,借以降低蒸腾作用,所以适于生长在干旱地区,如仙人掌。

三、叶(leaf)

维管植物进行光合作用的主要器官。典型的叶由叶片、叶柄和托叶组成。叶片是叶的最重要的部分,一般为薄的扁平体,这一特征与它的生理功能及光合作用相适应。在叶片内分布着叶脉,叶脉具有支持叶片伸展和输导水分与营养物质的功能。叶柄位于叶片基部,并与茎相连。叶柄的功能是支持叶片,并安排叶片在一定的空间位置,以接受较多阳光和联系叶片与茎之间水分与营养物质的输导。托叶位于叶柄和茎的相连接处,通常细小,早落。托叶形状因种类而异,例如梨树的托叶呈线形;豌豆的托叶很大,呈叶片状;洋槐和酸枣的托叶变为刺;蓼科植物的托叶包围着茎节基部,叫做托叶鞘。

植物的叶如果具有叶片、叶柄和托叶的叫做完全叶。有的植物叶并不全具有这三部分,如丁香的叶没有托叶,莴苣的叶没有托叶和叶柄,叫做不完全叶。

单子叶植物的禾本科和兰科,它们的叶没有叶柄和托叶而有叶鞘。禾本科植物的叶鞘包裹着茎秆,有加强茎的支持作用和保护叶腋内幼芽的功能。

img9

黄山松

裸子植物的叶也是多种多样的。苏铁(俗称铁树)为大型羽状复叶,丛生于茎的顶端,银杏叶为扇形,松柏类植物的叶则为针形和鳞片状。

从广义讲,凡是适应于进行光合作用的结构都可以叫做叶,例如低等植物中的某些藻类,植物体适于光合作用的扁平部分(例如海带的带片),或是藓类植物体上的“叶”都可以称为叶;从狭义讲只有维管植物才具有真正的叶。

叶的形态

img10

洋金凤

叶的形态特征主要表现在叶片的大小和形状上。不同种类的植物有很大的不同。叶片的长度由几毫米到几米(如棕榈、香蕉的叶片),王莲的巨大漂浮叶直径达两米,可载住一个小孩。叶的形状变化更大,叶片的形状,包括叶缘、叶尖、叶基以及叶脉的分布等,每种植物都有其特点。叶在形态上的多样性,是植物种类形态特征的重要方面。

每个叶上只有一个叶片的叫做单叶,像蓖麻、苹果、南瓜、向日葵和玉米等。叶柄上有两个以上叶片的叶叫做复叶,例如落花生叶柄上具4小叶,三叶橡胶具3小叶。复叶按小叶排列方式的不同又分为羽状复叶和掌状复叶,例如合欢的叶为羽状复叶,大麻的为掌状复叶。

各种植物的叶在茎上都有一定的着生次序叫做叶序,叶序有3种基本类型,即互生、对生和轮生。

在茎上每一节只生有一叶的叫互生叶序。互生叶序的叶子成螺旋状排列在茎上。如果任意取一个节上的叶为起点,螺旋而上,追溯到与起点叶在同一垂直线上的另一叶。同一垂直线上的两叶(起点叶与终点叶)之间的螺旋距离叫做叶周。叶周中有一定数目的螺旋圈数和一定数目的叶。

img11

狭叶荨麻

茎的每一节上有两叶相互对生,叫做对生叶序,例如丁香、薄荷等。在对生叶序中,下一节的对生叶常与上一节的叶交叉成垂直方向,这样两节的叶片避免相互遮蔽。

茎的每一节上着生3个或3个以上的叶,排成轮状,叫做轮生叶序。夹竹桃金鱼藻的叶序为轮生叶序。

虽然每种植物叶的形态都有其特点,但许多植物在发育过程中,可以出现不同形态的叶。例如子叶是植物体最早形成的叶片,其形态与正常叶不同。又如桉树幼小树苗的叶为卵形无柄的对生叶,老株的叶为披针形有柄互生叶。

叶的结构

被子植物叶片的结构一般比较一致,是由表皮、叶肉和叶脉3部分所组成。

叶片是有背腹之分的扁平体,表皮也有上下表皮之分。表皮是由一层生活细胞所组成,但也有少数植物叶片表皮是多层细胞的结构,称为复表皮。如印度橡皮树可有3—4层细胞、夹竹桃可有2—3层细胞组成的复表皮。叶片的表皮细胞一般为形状不规则的扁平体,侧壁凸凹不齐,彼此互相嵌合、连接紧密,没有细胞间隙,其外壁较厚,角质化,并具角质层,有的有蜡质。

img12

大叶冷水花

在叶片的表面还常有表皮附属物——毛和气孔(器)。叶肉由含有许多叶绿体的薄壁组织细胞组成,是绿色植物进行光合作用的主要场所。一般植物的叶片中叶肉明显地分为2部分:由栅栏组织,位于上表皮之下,细胞呈圆柱形,其长径与表皮成垂直方向排列;海绵组织,位于栅栏组织和下表皮之间,细胞呈不规则形状。栅栏组织和海绵组织细胞内含有大量叶绿体,都有着发达的细胞间隙,构成了庞大的通气系统,并与表皮的气孔相通连。

叶片中的维管束叫做叶脉,叶脉在叶片上的分布形式一般分为两大类:网状脉序和平行脉序。网状脉序的特点是叶脉错综分枝,连接成网状,是双子叶植物叶脉的特征。网状脉序因中脉分出侧脉的方式不同,又可分为羽状脉序和掌状脉序。苹果、夹竹桃、枇杷等植物为羽状脉序;南瓜、葡萄、槭树、蓖麻等植物为掌状脉序。平行脉序是中脉和侧脉自叶片基部发出,大致互相平行,至叶片顶端汇合,它是大多数单子叶植物叶脉的特征。

裸子植物中的银杏具有另一种类型的叶脉,叫做叉状脉序,叶脉为二叉分枝式,这种脉序也常见于蕨类植物。

img13

槲树

生态类型

叶是植物暴露在空气中面积最大的器官。植物演化过程中适应不同的环境(特别是水),产生各种形态结构。依照植物与水分的关系,把植物分为旱生植物,中生植物和水生植物。

旱生植物的叶小而厚或多茸毛,在结构上表皮细胞的细胞壁厚,角质层发达。有些种类表皮为复表皮而且气孔下陷,例如夹竹桃的叶。另一种类型的旱生植物叫做肉质植物,它们的叶片肥厚多汁,叶内有发达的薄壁组织,贮存大量水分。例如芦荟、景天、马齿苋等。仙人掌的叶片退化,茎肥厚、多浆、呈绿色,代替叶进行光合作用。

中生植物就是前面所讲的最常见、最普遍的类型。水生植物中许多类型是整个植物体浸没在水里,叶外形小而薄(例如黑藻),或成丝状(如狐尾藻)。沉没水中的叶表皮细胞外壁不角质化,没有角质层或角质层很薄,细胞内具叶绿体。叶上没有气孔。叶肉只有少数几层细胞,没有栅栏组织的分化。另外一些水生植物,植物体仅一部分浸没在水中,叶露出水面。其叶的结构除有发达的通气系统外,基本上与中生植物叶相似。

光也影响着叶片的结构,生长于直射阳光下的植物(称为阳地植物),受光和热比较强,四周空气比较干燥,其叶倾向于旱生的形态结构。而生长于荫蔽环境的植物(称为阴生植物)阳光漫射,环境阴湿,一般叶片大而薄,栅栏组织不明显,细胞间隙发达。在同一株植物上的不同部位的叶片,由于所处的环境不同,其形态结构也出现差异。位于植株顶部的叶倾向于阳生叶的结构,树冠下荫蔽处的叶倾向于阴生叶的结构。

叶的变态

有些植物叶的形态结构和生理功能,在本质上都发生了非常大的变化,叫做叶的变态。如仙人掌的全部叶子变为刺状,以减少水分的散失,适应干旱环境;酸枣、洋槐的托叶变成坚硬的刺,起着保护作用;豌豆复叶顶端几片小叶变为卷须,攀援在其他物体上,补偿了茎秆细弱,支持力不足的弱点。食虫植物的叶能捕食小虫,叫做捕虫叶,这些变态的叶有的呈瓶状,如猪笼草;有的为囊状,如狸藻;有的呈盘状,如茅膏菜。在捕虫叶上有分泌黏液和消化液的腺毛,当捕捉到昆虫后,由腺毛分泌消化液,将昆虫消化并吸收。

img14

日本小檗

许多植物在其个体发育过程中,有的叶也发生变态,有着特殊功能。例如木本植物芽的外围,有由叶变态的芽鳞包围,起着保护幼芽的作用;鳞茎中的变态叶肉质化、贮藏营养物质,如洋葱、百合的食用部分。在花和花序的基部也有变态的叶,例如玉米雌花序外面的苞叶、向日葵花序外边的总苞,具有保护幼小花和花序的作用。

img15

银边翠

落叶

叶子并不是长久地生长在植物体上,而是有一定的寿命。一般一年生植物,叶子随着植物体一起死亡。多年生草本植物和落叶的木本植物,其叶子的寿命只有一个生长季。常绿的木本植物,叶的寿命可以有几年。

当植物即将落叶时,叶子内部发生很大变化,细胞中有用物质逐渐分解运回茎内。叶绿体中叶绿素分解比叶黄素快,叶片逐渐变黄。有些植物在落叶前细胞中有花青素产生,绿叶变为红叶。与此同时,在叶柄基部有一层细胞进行分裂,形成几层小型的薄壁组织细胞,这层结构叫做离层,不久这层细胞间的中层分解,继而整个细胞分解,叶片逐渐枯萎,以后由于风吹雨打等机械力量,使叶柄自离层处折断,叶子脱落。在离层折断处的细胞栓质化,起着保护“伤口”的作用。叶脱落后,在茎上留下的疤痕,叫做叶痕。

四、花(flower)

被子植物繁衍后代的生殖器官。典型的花,在一个有限生长的短轴上,着生花萼、花冠和产生生殖细胞的雄蕊与雌蕊。有些学者认为裸子植物的孢子叶球也是“花”,而多数人则认为被子植物才有花,所以被子植物也称为有花植物。花的各部分不易受外界环境的影响,变化较小,所以长期以来,人们都以花的形态结构,作为被子植物分类鉴定和系统演化的主要依据。

img16

葎草

形态结构

花的形状千姿百态,大约25万种被子植物中,就有25万种的花式样。但是所有的花仍有共同的结构图式,它们的组成通常为:

花托 花与茎连接的部分,由节与节间组成,节上着生花的能育与不育的附属物。这些节往往由于节间的缩短和受抑制而紧密地拥挤在一起,导致花托显著变形,因此,在形状、大小和结构上都很不像茎。花托上所着生的不育部分(苞片、萼片、花瓣)可螺旋地或轮生地紧密排列在一起。

花萼 在花的最外面,对花的其他部分起保护作用,在形状和构造上十分近似叶子或苞片。绿色的萼片中含有叶绿体,表皮层上具气孔(器)和表皮毛,但很少像叶子那样分化出栅栏组织和海绵组织。在形态学上,把花萼视为一种变形的叶子。萼片一般成轮状排列,例如毛茛科为螺旋排列。

花冠 在花萼之内,花冠通常可分裂成片状,称为花瓣。花瓣一般比萼片大,在形态学中认为花瓣也是一种叶性器官。花萼和花冠合称花被。花瓣的表皮层上,也可有气孔和表皮毛。花瓣的大小和形状有很大变化,有的很大,有的则相当细小,甚至退化成鳞片、刺毛或各种腺体。花冠除了具保护作用之外,花瓣的颜色和香味,对于吸引动物传粉起着重要作用。花冠之所以有各种鲜艳的颜色,是由于细胞中含有有色体和细胞液中的色素,并受细胞内、外各种因素变化的影响。有些风媒花的花被很不明显,或呈绿色或近乎无色。

根据花瓣分离或联合的情况、花冠下部并合而成花冠筒的长短,以及花冠裂片的形状与深浅等特征,可将花冠的类型分为筒状(向日葵的管状花)、漏斗状(甘薯)、钟状(桔梗)、轮状(番茄)、唇形(芝麻)、舌状(向日葵的舌状花)、蝶形(花生)和十字形(油菜)。其中由于筒状、漏斗状、钟状、轮状和十字形花冠,其花瓣的形状与大小较一致,故这类花为辐射对称。而唇形、舌状与蝶形花冠,其花瓣形状、大小不一致,则呈两侧对称。也有些花,如美人蕉的花是不对称的。

img17

草乌

img18

盒果藤

雄蕊群 一朵花中全部雄蕊的总称。各类植物中,雄蕊的数目及形态特征较为稳定,常可作为植物分类和鉴定的依据。一般较原始类群的植物,雄蕊数目很多,并排成数轮;较进化的类群,数目减少,恒定,或与花瓣同数,或几倍于花瓣数。在一朵花中,如有4枚雄蕊,其中两枚花丝较长,两枚较短,称二强雄蕊,如唇形科和玄参科植物;如一朵花中有6枚雄蕊,其中四长两短的,称四强雄蕊,如十字花科植物,另外,雄蕊中花丝或花药部分,常有并连现象,假如花药完全分离,而花丝联合成一束的,称单体雄蕊,如蜀葵、棉花等;花丝并联成为两束的,称二体雄蕊,如蚕豆、豌豆等;花丝合为3束的,称三体雄蕊,如连翘;合为4束以上的称多体雄蕊,如金丝桃和蓖麻等。相反,花丝完全分离,而花药相互联合,称聚药雄蕊,如菊科,葫芦科植物。

每一个雄蕊,通常由花药和着生它的一个细的花丝组成。花药在花丝上的着生方式可分为:全着药,花药全部着生于花丝上,如莲;基着药,仅花药基部着生于花丝顶端,如莎草、小檗;背着药,花药的背部着生于花丝顶端,如油桐;丁字着药,花药背部中央一点着生于花丝顶端,易于摇动,如小麦,水稻;……广歧药,药室完全分离成一直线,并着生于花丝顶端,如地黄;“个”字药,药室基部张开,上面着生于花丝顶上。

通常每个花药由两个药瓣组成,每个药瓣有两个花粉囊,其中有花药壁和产生小孢子的药室(孢子囊)。每个孢子囊中有许多小孢子母细胞,它们各自经减数分裂后,产生四个单倍体的小孢子。此后每个小孢子(核)又分裂一次,形成一个大的营养细胞(或称管核)和一个小的生殖细胞(核),这时具两细胞的花粉粒(即雄配子体)基本成熟。在成熟花药开裂以前,药室之间的分隔可能已破裂,四个孢子囊的花药即变成两个花粉囊。花粉粒即从开裂的花药中释放出来。花药开裂方式有以下三种:纵裂,沿两个花粉囊的交界处纵行开裂,如油菜、牵牛花等;横裂,沿花药中部横向裂开,如木槿、蜀葵等;孔裂,在花药顶部具小孔状裂口,如茄、番茄等;瓣裂,花药侧壁开裂成数瓣,如樟树、小檗等。

img19

毛胞桐

雌蕊群 一朵花中所有雌蕊的总称。雌蕊位于花的中心,由着生胚珠的心皮所组成。一般认为心皮是组成雌蕊的基本单位,一朵花中可能有一心皮或多个心皮组成为雌蕊群。心皮是叶子的变态。

由一个或多个心皮形成的雌蕊,常分化出基部能育、膨大的部分,称为子房,以及子房上面不育的部分,即花柱和柱头。依据子房在花上着生情况的不同,分为以下三种:上位子房,子房底部与花托相连,这种花称为下位花,如毛茛和金丝桃;下位子房,整个子房下陷于花托之中,并与花托完全愈合,这种花称为上位花,如南瓜;还有半下位子房,子房的下半部与花托愈合,这种花称为周位花,如甜菜等。周位花的花托多少扩大成杯状或壶状,子房着生在中央,花被和雄蕊围着子房仍是上位子房,如桃花,所以周位花可以具有上位子房或半下位子房。

img20

水仙

一朵花,如果具有萼片、花瓣、雄蕊和雌蕊等四部分,称为完全花;若缺少其中一部分者,则称为不完全花。一朵花中雄蕊和雌蕊都有的,称为两性花;有些植物的花中只有雄蕊或雌蕊,这种花称为单性花。只有雄蕊的为雄花,只有雌蕊的为雌花,例如栎树和柳树的花。如果雌花和雄花同在一株上,这种植株称为雌雄同株,例如栎树;如果雌花与雄花各自着生在不同的植株,则称为雌雄异株,例如柳树。有的植物,在同一株中可以有两性花和雄花与雌花;而有的种,既有两性花的植株也有雌花植株与雄花植株,如猕猴桃。

花序

轴及其着生在上面的花的通称,也可特指花在花轴上不同形式的序列,如圆锥花序,穗状花序等。常作为被子植物分类鉴定的一种依据。

类型 一般根据花在轴上排列的位置,或者开花的顺序划分,而后者是较为普通的一种分类方式。

按照花在茎上的位置,可将花序分成顶生花序,腋生花序和居间花序。顶生花序是在分枝系统的顶上;腋生花序则是在短的腋生枝顶,或者是代表叶状的腋生枝退化而成的花序;居间花序是顶生的一些花,由于主轴顶端的不断生长,或者由于合轴生长而留在后面,交替地形成了能育的和不育的部分。着生在节间上的花序,有时也称为居间花序。

img21

美洲商陆

按照在茎上开花的顺序,分成无限花序与有限花序两大类。

无限花序可随花序轴的生长,不断离心地产生花芽,或重复地产生侧枝,每一侧枝顶上分化出花,这类花序的花一般由花序轴下面先开,渐次向上,同时花序轴不断增长,或者花由边缘先开,逐渐趋向中心。

有限花序一般称聚伞花序,其花序轴上顶端先形成花芽,最早开花,并且不再继续生长,后由侧枝枝顶陆续成花。这样所产生的花序分枝不多,花的数目也较少,它们往往是顶端或中心的花先开,渐次到侧枝开花。

五、果实(fruit)

被子植物的雌蕊经过传粉受精,由子房或花的其他部分(如花托、花萼等)参与发育而成的器官。

果实一般包括果皮和种子两部分,起传播与繁殖的作用。在自然条件下,也有不经传粉受精而结实的,这种果实没有种子或种子不育,故称无子果实,如无核蜜橘、香蕉等。此外未经传粉受精的子房,由于某种刺激(如萘乙酸或赤霉素等处理)形成果实,如番茄、葡萄,也是无种子的果实。

多数被子植物的果实是直接由子房发育而来的,叫做真果,如桃、大豆的果实;也有些植物的果实,除子房外尚有其他部分参加,最普通的是子房和花被或花托一起形成果实。这样的果实,叫做假果,如苹果、梨、向日葵及瓜类的果实。

多数植物一朵花中只有一个雌蕊,形成的果实叫做单果。也有些植物,一朵花中具有许多离生雌蕊聚生在花托上,以后每一雌蕊形成一个小果,许多小果聚生在花托上,叫做聚合果,如草莓。还有些植物的果实,是由一个花序发育而成的,叫做复果或称花序果、聚花果,如桑、凤梨和无花果。

结构

果实一般由果皮和种子组成,其中果皮又可分为外果皮、中果皮和内果皮。果实的种类繁多,果皮的结构也各不相同。

生长与发育

果实在传粉受精后,其体积的增加比受精前大200—300倍。果实成熟后的形状与大小差异,主要受遗传基因所控制。一般果实体积增长的过程,也和营养生长相似,即开始时生长缓慢,以后逐渐加快,达到最高点时又逐渐减缓,以至停止生长。

生理与生化的变化

在果实的生长发育过程中,除了形态与结构上的变化外,还伴随有复杂的生理生化的变化,其中肉质类果实的变化尤为明显。

颜色 果实色泽是果实品质鉴定的重要标记之一,其色泽与果皮中所含色素有关。主要的色素有叶绿素、类胡萝卜素、花青素等。由于果实中色素的含量与种类不同,使果实所呈现的色泽不相同。通常较强的光照与充足的氧气,有利于花青素的形成,因此在果实向阳的一面,往往着色较好。

质地 随着果实的成熟过程,果皮的质地逐渐由硬变软,主要原因是果皮细胞壁中可溶性果胶增加,原果胶减少,使细胞间失去了结合力,以致细胞分散,果肉松软。果肉细胞壁的成分不同,以及果肉中石细胞的多寡等都会影响果肉的硬度。温度和乙烯、萘乙酸等激素和生长调节剂均能降低果实的硬度。

香气 在果实的成熟过程中,产生一些水果香味,主要成分包括脂肪族与芳香族的酯,还有一些醛类。柑橘中有60多种香气成分;葡萄、苹果中达70多种。香蕉的特殊香味主要是乙酸戊酯,橘子中的香味则为柠檬醛。

糖类 果实中积累的淀粉,在成熟过程中逐渐被水解,转变为可溶性糖,使果实甜。果实中的主要糖类有葡萄糖、果糖和蔗糖。不同果实糖的种类及含量都有不同。如葡萄含葡萄糖多;桃、柑橘以蔗糖为主;柿、苹果等葡萄糖和果糖较多,也含有少量的蔗糖。

有机酸 在未成熟果实中含有多种有机酸,使水果具有酸味。主要的有机酸有苹果酸、柠檬酸和酒石酸等。随着果实的成熟,一部分酸转变成糖,有的被氧化,有的被钾离子和钙离子等中和,所以酸味下降。

单宁 在柿、李等果实未成熟时,由于细胞液中含有较多的单宁物质,所以有涩味。在果实成熟过程中单宁被过氧化物酶氧化成无涩味的过氧化物,或凝集成不溶于水的胶状物质,而使涩味消失。生产上用乙烯利处理柿子,即可脱涩转红。

分类

果实种类繁多,分类方法也是多种多样。除前面已经提到的,依果实来源与发育的不同,分为真果、假果、单果、聚合果和复果外,通常又根据成熟果实的果皮是脱水干燥,还是肉质多汁而分为干果与肉果。干果成熟后是否开裂,又分为裂果与闭果等。

演化

果实是植物界进化到一定阶段才出现的。当中生代裸子植物在地球上占优势时,其种子尚没有果皮包裹。如银杏的种子俗称“白果”,但它并不是果实,而是种子。到了新生代,被子植物大量出现,它们的种子包藏在果皮内,这对种子是一种良好的保护结构,同时对种子的传播也具有重要意义。果实能使种子渡过不良环境,从而使植物种族得到繁衍。这也是新生代以来被子植物在地球上占绝对优势的重要原因之一。

六、种子(seed)

img22

苏铁的种子

裸子植物和被子植物特有的繁殖体,它由胚珠经过传粉受精形成。种子一般由种皮、胚和胚乳3部分组成,有的植物成熟的种子只有种皮和胚两部分。种子的形成使幼小的孢子体——胚得到母体的保护,并像哺乳动物的胎儿那样得到充足的养料。种子还有种种适于传播或抵抗不良条件的结构,为植物的种族延续创造了良好的条件。所以在植物的系统发育过程中种子植物能够代替蕨类植物取得优势地位。种子与人类生活关系密切,除日常生活必需的粮、油、棉外,一些药用(如杏仁)、调味(如胡椒)、饮料(如咖啡、可可)等都来自种子。

种子的形态

种子的大小形状,颜色因种类不同而异。椰子的种子很大,油菜、芝麻的种子较小,而烟草、马齿苋、兰科植物的种子则更小。蚕豆、菜豆为肾脏形,豌豆、龙眼为圆球状;花生为椭圆形;瓜类的种子多为扁圆形。颜色以褐色和黑色较多,但也有其他颜色,例如豆类种子就有黑、红、绿、黄、白等色。种子表面有的光滑发亮、也有的暗淡或粗糙。造成表面粗糙的原因是由于表面有穴、沟、网纹、条纹、突起、棱脊等雕纹的结果。有些还可看到种子成熟后自珠柄上脱落留下的斑痕——种脐和珠孔。有的种子还具有翅、冠毛、刺、芒和毛等附属物,这些都有助于种子的传播。种子体积的大小差异很大,一个带着内果皮的椰子种子,可以达几千克重,而药用植物马齿苋种子的千粒重只有0.13克,寄生的高等植物列当种子更小,千粒重仅在0.0029—0.0049克之间。

种子大小的差异悬殊,各有其生物学上的意义。例如椰子的种子很大,每株结实数量有限,由于种子极易萌发,种子内又富含液体胚乳,营养充足,这样就可得到“重点保证”。而那些体积极小的种子,则以多取生,虽然它们只有占总数很少的种子能够萌发,但仍可产生大量后代。许多一年生杂草植物,就是以这种方式进行大量繁殖的。

种子的结构

裸子植物与被子植物种子结构非常相似,都由种皮、胚和胚乳三部分组成。

种皮由珠被发育而来,具保护胚与胚乳的功能。裸子植物的种皮由明显的3层组成。外层和内层为肉质层,中层为石质层。

被子植物的种皮结构多种多样,如花生、桃、杏等种子外面有坚硬的果皮,因而种皮结构简单,薄如纸状;小麦、玉米、水稻、莴苣的种子,果皮与种皮愈合,种子成熟时种皮被挤压而紧贴于果皮的内层;有些豆科植物和棉花的种子具有坚硬的种皮,种皮的表皮下有栅栏状的厚壁组织细胞层,表皮上有厚的角质膜。有些豆类种子由于角质膜过厚形成“硬实”,不易萌发。棉籽的表皮上有大量的表皮毛,就是棉纤维。番茄和石榴种子的种皮,外围组织或表皮细胞肉质化。番茄种皮的表皮细胞柔软透明呈胶质状,并有刺突起。石榴种皮的表皮细胞伸展很长成为细线状。细胞液中含有糖分可供食用;荔枝、龙眼的种子可食部分与石榴不同,是由假种皮肉质化而成,假种皮是由珠柄组织凸起包围种子而形成。

种皮的结构与种子休眠密切相关。有的植物种皮中含有萌发抑制剂,因此除掉这类植物种皮,对种子萌发有刺激效应。

胚由受精卵发育形成。发育完全的胚由胚芽、胚轴、子叶和胚根组成。裸子植物的胚都是沿着种子的中央纵轴排列,不同种类种子的胚之间唯一不同的是子叶数目,变动在1—18个之间。但常见的子叶数目为两个,如苏铁、银杏、红豆杉、香榧、红杉、买麻藤和麻黄等。

被子植物胚的形状极为多样,椭圆形、长柱形或程度不同的弯曲形、马蹄形、螺旋形等等。尽管胚的形状如此不同,但它在种子中的位置总是固定的,一般胚根都朝向珠孔。

胚的子叶也多种多样,有细长的、扁平的,有的含大量储藏物质而肥厚呈肉质,如花生、菜豆,也有的成薄薄的片状如蓖麻。有的子叶与真叶相似,具有锯齿状的边缘,也有的在种子内部呈多次折叠如棉花。

裸子植物胚乳是单倍体的雌配子体,一般都比较发达,多储藏淀粉或脂肪,也有的含有糊粉粒。胚乳一般为淡黄色,少数为白色,银杏成熟的种子中胚乳呈绿色。

绝大多数的被子植物在种子发育过程中都有胚乳形成,但在成熟种子中有的种类不具或只具很少的胚乳,这是由于它们的胚乳在发育过程中被胚分解吸收了。一般常把成熟的种子分为有胚乳种子和无胚乳种子两大类。

在无胚乳种子中胚很大,胚体各部分,特别是在子叶中储有大量营养物质。在有胚乳种子中胚与胚乳的大小比例在各类植物中有着很大不同。

不同植物种子中的胚乳的寿命,数量以及储藏物质的种类都有很大不同。胚乳中最普通的储藏物质是淀粉、蛋白质和脂肪。还有碳水化合物,如甘露糖和半纤维素可以沉积在细胞壁上,如咖啡、柿子、海枣等就是以这种方式贮存养料。含淀粉的胚乳常常是没有生命的,如灯心草科、莎草科、禾本科、蓼科、石竹科中含淀粉的胚乳细胞成熟后细胞核退化;而在百合科、石蒜科、萱草属、蓖麻属和胡萝卜属中含淀粉的胚乳细胞是有生命的。

一般情况下,在胚和胚乳发育的过程中,胚囊体积不断地扩大,以致胚囊外的珠心组织受到破坏,最后为胚和胚乳所吸收。所以在成熟的种子中没有珠心组织。但有些植物在种子发育过程中珠心组织保留下来,并储藏养料形成外胚乳。菠菜、甜菜、咖啡的成熟种子具有外胚乳。胡椒、姜的成熟种子兼有胚乳和外胚乳。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈