首页 理论教育 老龄化和细胞衰老对肿瘤转移的影响

老龄化和细胞衰老对肿瘤转移的影响

时间:2022-04-24 理论教育 版权反馈
【摘要】:美国60%以上的肿瘤和69%的肿瘤死亡发生在65岁以上人群中,而这部分人群大约占总人口的13%[6]。因此,在全球人口逐渐走向老龄化的趋势下,肿瘤也将成为随之而来的威胁[8]。WRN基因的功能性突变可导致早老性疾病及肿瘤的易感[9]。更为现实的是,年龄相关变化似乎可以放缓肿瘤增殖或转移的侵袭特征。实验动物模型中给出了几种年龄相关肿瘤行为的原因假设,涉及肿瘤细胞和宿主的生物学特性[15]。

◎Futoshi Okada,Hiroshi Kobayashi

目前的研究估计,及至2050年,发达国家中75岁及以上人口比例将提高到约40%[1]。这有赖于在公众健康、医疗保健及公众营养等方面的大量资金投入。人的平均期望寿命也显著提升,现今在发达国家中平均期望寿命已接近80岁[2]。另一方面,无论寿命如何延长,也难以跨越125岁,迄今人类寿命未能超过122岁零5个月(法国Jeanne Calment去世时的年龄[3])。据估计,如果肿瘤和动脉粥样硬化两大疾病被攻克后,平均寿命大约将被延长10年,但最长寿命仍然无法改变[4]。这可能表明,目前人类的寿命已达到峰值。

尽管衰老本身并不是一种疾病,但它伴随着器官和身体功能的下降,疾病的易感性也相应增加,如感染、自身免疫性疾病与肿瘤[3]。最近,美国国家癌症研究所根据其SEER计划(surveillance,epidemiology,and end results)估计,美国肿瘤患者的年龄中位数是70岁左右,而肿瘤死亡率每10年递增[5]。美国60%以上的肿瘤和69%的肿瘤死亡发生在65岁以上人群中,而这部分人群大约占总人口的13%[6]。预计从2000年到2050年肿瘤患者的数量将从130万增长一倍,达260万,其中中老年患者预计将占大部分[7]。因此,在全球人口逐渐走向老龄化的趋势下,肿瘤也将成为随之而来的威胁[8]

肿瘤的发生发展和肿瘤细胞获得转移等恶性特征都受宿主年龄依赖的生物学条件和社会环境所制约。此外,即使是几乎相同的组织类型,肿瘤组织的恶变也取决于宿主的年龄。

宿主年龄或者说细胞衰老如何影响肿瘤的形成及其恶性程度呢? 以下我们将说明年龄相关的器官癌变可分成哪几个类别,同时讨论在衰老和癌变之间起到桥梁作用的若干分子。此外,由于一些临床资料或实验研究表明,肿瘤生长或植入于相对年老的宿主时恶性程度较小,我们希望阐明这一现象的内在和外在机制。

3.6.1 衰老与肿瘤

(1) 加速衰老性疾病与肿瘤

临床早衰综合征出现自发肿瘤的过程体现了衰老与肿瘤之间的联系[6]。Hutchinson-Gilford综合征是一种称为早老症的早发性疾病。其他加速衰老的疾病包括Werner综合征、Cockayne综合征或着色性干皮病。Hutchinson-Gilford综合征是由编码核结构蛋白的核纤层蛋白A/C(LMNA)基因突变引起的,其他加速衰老性疾病大多是由DNA复制缺陷和DNA修复系统缺陷引起的[7]。Werner综合征是由位于人类8号染色体上的WRN基因突变引起的。WRN基因编码的解旋酶在DNA重组、端粒和基因组稳定性的维持中都发挥重要作用。WRN基因的功能性突变可导致早老性疾病及肿瘤的易感[9]。在人类肿瘤中,也观察到了WRN基因的表观遗传性失活[10]。表3-5总结了老化与致癌过程之间可能起到桥梁作用的分子。精确调节DNA复制和DNA修复的协调一致对维持细胞基因组的稳定性非常关键,对这个有序调节过程的任何干扰是正常的未成熟细胞转变为衰老细胞或转化细胞的基本原因之一[7]

(2) 衰老与器官特异性肿瘤发生率

许多遗传学研究表明,癌变过程需要时间,因此多数肿瘤发生在老年人的可能性更高,一种肿瘤发病率可能随着宿主年龄的增大而呈现直线上升的趋势。从2001年到2005年的肿瘤发病率的SEER分析显示,每种肿瘤的发病率都具有年龄依赖性[11](图3-11)。此分析为根据发病年龄将不同组织器官的肿瘤分为6大类提供了依据:①婴幼儿和青少年时期的好发肿瘤,如骨、关节肿瘤和急性淋巴细胞白血病;②青少年时期的好发肿瘤,如霍奇金淋巴瘤和睾丸癌;③中年时期的好发肿瘤,如肛门、宫颈、眼、口腔和咽、舌、皮肤(不包括基底和鳞状细胞性)和甲状腺等部位肿瘤;④伴随有器官老化的肿瘤,年轻人少有,如膀胱、乳腺、结肠直肠、子宫体、食管、肾、喉、肝、肺、卵巢、胰腺、前列腺、非上皮皮肤、小肠等部位肿瘤以及急性粒细胞白血病/慢性粒细胞白血病、黑色素瘤、骨髓瘤;⑤肿瘤高发部位,如大脑和内分泌系统;⑥非年龄依赖性肿瘤,如软组织肿瘤。

虽然肿瘤发病率一般随着年龄增大而升高,但临床数据显示肿瘤恶性程度,尤其是转移的发生,似乎随着年龄的增长而降低[12]。对死于相同组织器官肿瘤患者的广泛尸检研究发现,年轻患者中远处转移的比例大于老年患者,60岁以上患者的血行转移和淋巴转移的频率下降[12,13]

我们认为中老年人肿瘤恶性程度有所下降,可能有如下几个原因:中老年人与年轻人相比有更多体检的机会,更有可能被及早诊断,否则老年人相对年轻人在诊断和转移之间的生存时间间隔将更短。更为现实的是,年龄相关变化似乎可以放缓肿瘤增殖或转移的侵袭特征。

表3-5 衰老、老化和癌变之间的分子联系

(3) 衰老:对于癌发生而言是敌还是友?

Ershler和他的同事们发现不同年龄段其肿瘤的行为各有不同。一些实验性肿瘤表现出原发瘤生长减缓和较少转移等特点(表3-6)。同样,临床上年龄越老的肿瘤患者,尤其是乳腺癌、胃癌、前列腺癌以及程度较轻的肺癌和结肠癌,表现出增长越慢、转移越少和生存期越长的特征[13-17](表3-7)。

生前临床症状和尸检观察表明,老年(寿命高于平均值10%的人群)肿瘤患者的肿瘤不具侵袭性,且增长极其缓慢,症状也很轻微。长期生活在幸福安宁家庭氛围中的病人,多数享有较长寿命并最终安详逝世。这些肿瘤的形成常发生于生命的后期阶段,往往侵袭性较弱,称为“自然终结型肿瘤”[8]

实验动物模型中给出了几种年龄相关肿瘤行为的原因假设,涉及肿瘤细胞和宿主的生物学特性[15]。年龄相关差异可能原因包括端粒的缩短和(或)端粒酶活性、DNA复制/DNA修复系统和肿瘤细胞本身免疫原性的变化。所有这些因素把肿瘤学和老年学联系在一起[6]。考虑到年龄相关的肿瘤发病率和恶性程度的变化,宿主的环境因素可被分为两类:局部性和体液性(例如,血管生成、伤口愈合、细胞外基质、免疫效应细胞、激素、生长因子/细胞因子、营养、活性氧及其他)[5,15,18-20]。调节老化、肿瘤发展和转移扩散的内在因素如图3-12所示。

图3-11 不同年龄和不同类型(部位)肿瘤发病率

(数据来自: 美国国家癌症研究所的监测、流行病学调查和SEER项目)

表3-6 宿主衰老如何影响肿瘤的进展和恶性程度(实验研究)

续表

注:sc:皮下注射;iv:静脉注射;ip:腹腔注射; ih:肝内注射;im:肌内注射;mfp:乳腺植入;po:口服;st:自发肿瘤;BBN:N-丁基-N-4-hydroxybityl亚硝胺。

表3-7 关于宿主衰老影响肿瘤进展和恶性程度的临床研究

续表

图3-12 用于解释肿瘤发展和转移的年龄相关性降低的宿主和细胞因素

3.6.2 血管发生

实验和临床研究表明,肿瘤血管生成及其密度与宿主的年龄增长成反比[21-23]。老年人的肿瘤血管结构与年轻人的有很大不同。与年轻人相比,老年人的肿瘤更多为无血管或血管密度较少,较少血管侵犯。年轻人不断增长的肿瘤中多形成许多大血管腔,它们多呈直行,且有统一的直径和众多交错点,形成密集的血管网络,而老年病人肿瘤血管多呈扭曲、稀疏和不规则分布[23]。该特点有时被称为血管衰老,因为它与在端粒酶缺乏的Terc-/-小鼠中发现的结果类似[24]

目前认为这种随年龄增长肿瘤生长和扩散能力降低的原因是由于刺激血管生成的可溶性因子水平减少和对血管生成因子的反应性降低有关[22,25]。肿瘤血管生成一定程度上依赖于免疫功能,尤其是T细胞和巨噬细胞产生的血管生成因子,如淋巴因子、淋巴细胞诱导的血管生成因子和成纤维细胞生长因子。因此年轻机体具备完善的免疫系统,可能更有利于肿瘤血管生成,而血管生成因子的生成能力和相应的机体反应性会随着年龄的增加而减弱[22]

3.6.3 纤维化反应和细胞外基质

肿瘤细胞处于细胞外基质(ECM)环境中,同时也反向控制细胞外基质。肿瘤的恶性特征受ECM的影响,胚胎发育、成熟和老化也影响ECM的合成。肿瘤包膜或肿瘤结缔组织主要由纤维反应方式生成。一般来说,在老年患者的肿瘤中含有更多的纤维组织[12,25,26],从而抑制肿瘤血管生成[23]。纤维化后可形成致密的纤维网络,抑制跨基膜的转移和减少蛋白水解酶的降解,因此减少侵袭和转移[26]

ECM由四大分子家族——胶原蛋白、弹性蛋白、多糖和结构性糖蛋白组成。胶原蛋白约占生物体内所有蛋白的30%,大部分被证明与肿瘤恶性特征有关。对ECM的研究发现纤维反应相关的胶原蛋白的合成上调可能是宿主肿瘤侵袭性减弱的机制之一。胶原蛋白合成抑制剂治疗可增加老龄小鼠肿瘤的增长和侵袭性[12,26]

3.6.4 免疫

许多免疫学家认为与年龄有关的免疫功能衰退主要是由于胸腺和相应的T细胞功能障碍,其可能与年龄依赖性的肿瘤发展有关[25]。基于与年龄有关的免疫缺陷,Thomas最早提出免疫监视的概念[27],而后经Good进一步完善了这些概念[28],年龄相关的免疫功能下降被认为是中老年患者肿瘤发生发展的重要因素[29]。即器官移植后的免疫抑制治疗或后天免疫缺陷综合征导致的免疫功能紊乱可伴随有肿瘤发病率的增加,这种现象支持这一理论。高免疫功能小鼠肿瘤的发病率普遍低于免疫反应低下者。但奇怪的是,在老龄小鼠中,免疫衰退却可能有助于减少肿瘤的发生和转移。

使用从老龄供体小鼠中获得的免疫效应细胞的重构实验为年龄相关的免疫功能低下参与肿瘤发生发展提供了直接证据。幼年小鼠胸腺切除后,接受致死剂量照射,再从老年供体小鼠获得骨髓细胞或脾细胞,其肿瘤生长显著减缓[14,30]。应用亚致死剂量照射、抗T细胞抗体、抗辅助性T细胞抗体或皮质类固醇激素治疗抑制年轻小鼠的免疫功能,也可抑制肿瘤生长和转移[14,30]。先天免疫功能低下小鼠和患有T细胞缺乏症的年轻小鼠肿瘤生长缓慢。这些研究结果与Prehn的“免疫增强理论”一致,即在某些情况下宿主免疫可刺激肿瘤的生长[31]

免疫促进肿瘤的基本机制是肿瘤特异性抑制性T性细胞(Ts)的出现[32]。通过将从荷瘤小鼠中获得的T细胞传输到经过相同肿瘤细胞免疫的小鼠中证实了Ts的存在,受体小鼠对肿瘤细胞的抵抗能力被抑制[33]。因此Ts可抑制其他具有免疫能力宿主的抗肿瘤免疫。Ts的有效作用伴随着年龄的增长而减弱,可以解释肿瘤生长为何在老年患者中受限[32]。衰老对T细胞各个亚型有不同的影响。CD8+细胞和B细胞功能受损程度低于CD4+细胞和初始T细胞[21,34,35]

中性粒细胞、单核巨噬细胞和自然杀伤(NK)细胞等天然免疫组成成分,在生命后期能得到更好地保存。NK细胞在衰老过程中数量增加,但作用减少,表现出数量和功能的分离[12,36]。同样的,在老年肿瘤宿主中,免疫细胞对调节性细胞因子的反应性也发生改变[37]

一个自发性高血压大鼠模型已被用于研究年龄相关的免疫活性与肿瘤转移之间的关系。由于天然胸腺细胞抗体和胸腺激素分泌的下降,SHR大鼠表现出衰老相关的T细胞功能障碍[38,39],巨噬细胞和NK细胞也被非特异性激活,老年大鼠的乳腺癌(SST-2)转移率降低[38,40]。而在年轻的SHR大鼠中,NK细胞和巨噬细胞被激活后,肿瘤转移率也相应降低[41]

肿瘤细胞的免疫原性是抗肿瘤免疫中的另一个关键因素。弱免疫原性或无免疫原性肿瘤的生长模式比高免疫原性肿瘤受宿主年龄的影响更加明显[6,15,42,43]

3.6.5 可溶性生长因子及机体应答

肿瘤细胞原位移植时,与年龄相关的宿主微环境因素明显存在,不同年龄其肿瘤形成有所不同。但这在肿瘤细胞异位移植时作用并不明显[44]

通过幼龄与老龄小鼠的共生(即共享血流)研究发现可溶性因子的存在。幼龄小鼠静脉注射肿瘤细胞后形成的转移灶要比老龄小鼠大10倍;在幼龄和老龄小鼠连接成的共生体中,老龄一方的转移灶大小与幼龄一方相似[18]。这些结果表明转移潜能可能部分受经血液或淋巴运输的全身体液因素影响[45]

性激素就是可能的影响因素[19]。而某些激素依赖性肿瘤的生长和扩散过程中(如乳腺癌、前列腺癌、肾癌、黑色素瘤或类癌瘤),肿瘤的恶性程度可能会受到年龄相关激素水平变化的影响,如胸腺系或糖皮质激素[12,42,46],这些激素可部分调节免疫功能。其他的细胞因子和生长因子也参与了肿瘤的形成和转移。

3.6.6 活性氧

活性氧(ROS)和一氧化氮(NO)反应形成的副产品是DNA损伤最常见和最主要的内在原因之一。活性氧是由电离辐射或遗传毒性药物等外部物质作用产生。它们还通过线粒体代谢、烟酰胺腺嘌呤二核苷酸磷酸氧化酶激活、过氧化物酶、细胞色素P450酶、一氧化氮合酶脱偶联、炎性细胞的氧化和抗菌爆裂等内源性过程产生。这些活性氧可导致每个细胞每天约104次的反应。ROS包括极不稳定的超氧阴离子自由基和羟基自由基,而其他物质(如过氧化氢)可自由弥散,且寿命相对较长[47]。ROS通过脂质过氧化或蛋白质损伤,DNA复制错误或自发的化学变化可导致单链和双链的断裂、内收或交联以发挥遗传/细胞毒活性。

有害的ROS可通过抗氧化防御机制被清除,包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化物酶、过氧化物氧还酶和谷胱甘肽。此外,多种非酶、低分子量抗氧化剂(如抗坏血酸、丙酮酸、黄酮类化合物和类胡萝卜素)也有清除活性氧的作用。当发生细胞抗氧化和抗氧化防御系统不能抵御ROS的情况时,则被称为氧化应激

氧化应激是出现衰老表型的重要原因。20世纪70年代的研究表明,生长在低氧分压下的细胞有较长的寿命,而生长在高浓度氧条件下的细胞寿命较短且端粒缩短[48]。超氧化物歧化酶和过氧化氢酶的表达可延长果蝇寿命的30%,因此氧化应激被认为是老龄化的一个关键因素[49]

在正常耗氧量时可随机发生活性氧引起的生物分子破坏(老化),然而必须维持ROS的动态平衡。尽管炎症相关ROS可使良性肿瘤细胞具有转移特性,但炎性细胞产生的活性氧的杀菌作用仍然是公认的宿主防御机制[50-52]。Niitsu等一直在研究ROS调节癌转移的机制。活性氧激活PKCζ,而PKCζ反过来又使Rho GDI-1磷酸化,使Rho GTPases从Rho GDI-1上解离下来,从而导致癌转移[53]

近来有研究提示ROS和NO是特定的细胞信号分子[47,54,55]。无论ROS和NO在何处或如何产生,细胞内的氧化应激都有两个潜在的重大影响:破坏各种细胞成分和触发特定信号通路的激活[47]。这两种效应可以刺激许多细胞过程,这些过程与老化及与年龄相关疾病(如癌症)的发展密切相关。

3.6.7 营养和热量限制

临床和实验研究已经证明,限制饮食可延缓衰老和癌症的发展与转移[54,56],营养需求及饮食习惯都会随着年龄而改变[42]。以与老年小鼠相同的饮食(内容相同,但热量较少)喂养年轻小鼠,其结果是它们体重减轻,且肿瘤的生长速度较慢,存活较长[42]。在老年人中较普遍的饮食习惯可解释肿瘤表型与年龄相关变化[42]。对癌易感动物和经病毒或化学处理的动物进行饮食限制,也可显著降低肿瘤的发病率和转移,显着延长生存期。当小鼠以低于正常50%热量的饮食喂养,可预防年龄依赖性的免疫能力下降[57]。最新研究还表明,限制热量可减少代谢相关的活性氧产物的生成。

3.6.8 端粒和端粒酶

每个染色体末端的核苷酸重复序列称为端粒。端粒在每次有丝分裂过程中起到年龄依赖性的染色体修复作用,从而在复制过程中保护染色体末端,维持染色体的稳定[9]。端粒在细胞分裂过程中不断缩短。当它们到达一个临界长度,细胞复制就终止了。因此,端粒的缩短是一个与细胞和生物体复制过程的衰老、老化和癌症有关的内在过程。端粒与转移的关系尚未完全清楚。端粒反转录酶(TERT)的基因表达与几个与转移有关的致癌信号途径可相互调节。例如,视网膜母细胞瘤/E2Fl和Akt通路被激活时可诱导TERT基因的表达。同时,TERT可上调糖酵解基因和Met基因,从而调节肿瘤的运动、侵袭、血管生成和转移。

3.6.9 与代谢有关的线粒体DNA突变

线粒体代谢和ROS加速衰老与癌症发展的机制是相同的[56]。作为一个能量产生的副产品,ROS由线粒体产生,并能损害线粒体DNA(mt DNA)。一些DNA受损的细胞将会凋亡。在一般情况下,线粒体DNA突变会随着年龄逐渐累积,因而可将其看作是老龄化的时钟[56]。此外,线粒体内特有的抗氧化酶——锰超氧化物歧化酶的过度表达可减弱肿瘤形成和转移的能力。

线粒体的体细胞突变在肿瘤恶变中发挥作用,同时肿瘤mt DNA体细胞突变的偏好性积累也有助于肿瘤的生长。另一种理论认为,肿瘤细胞转移潜能的获得是由mt DNA突变驱动的。运用胞质内细胞器重组(cybrid)技术可将高转移性肿瘤细胞的mt DNA转入弱转移性肿瘤细胞,从而使其转移能力增强,反之亦然[58]。Ishikawa等验证了在mt DNA中,编码NADH脱氢酶亚基6的基因突变可能是肿瘤细胞恶性转化的致病区域,这种转变被认为是过量的ROS导致的呼吸复合物I活动的缺陷。

3.6.10 衰老的精神影响

除了与衰老相关的生理变化及其对癌转移影响,衰老也伴随着抗压能力的下降及社会经济状态和心理状态的变化[7]。据报道,社会孤立、离异和丧亲会增加肿瘤复发、转移和死亡的风险率[59]。由于社会孤立产生的心理压力(个人住房),心理因素对转移的影响力已经上升,并可见胸腺重量减小及免疫反应被抑制(NK细胞和巨噬细胞)[60]。相比之下,通过社会的支持或干预可以减少孤立压力的影响,延长寿命并降低转移的发生率[61]

(盛媛媛译,钦伦秀审校)

参考文献

[1]Edwards BK,et al. Annual report to the nation on the status ofcancer,1973 ~ 1999,featuring implications of age and aging onUS cancer burden. Cancer,2002,94: 2766-2792.

[2]Guyer B,et al. Annual summary of vital statistics-1995.Pediatrics,1996,98: 1007-1019.

[3]Ershler WB. The influence of advanced age on cancer occurrenceand growth. Cancer Treat Res,2005,124: 75-87.

[4]Greville TNE. US life tables by cause of death: 1969 ~ 1971. USDecennial Life Tables for 1969 ~ 1971,1971,1: 5-15.

[5]Ries LA,eds. SEER Cancer Statistics Review,1973 ~ 1993:Tables and Graphs. Bethesda MD: National Institutes ofHealth,1996.

[6]Ershler WB,et al. Aging and cancer: issues of basic and clinicalscience. J Natl Cancer Inst,1997,89: 1489-1497.

[7]Balducci L,et al. Cancer and ageing: a nexus at several levels.Nat Rev Cancer,2005,5: 655-662.

[8]Kitagawa T,et al. The concept of Tenju-gann,or“natural-endcancer”. Cancer,1998,83: 1061-1065.

[9]Finkel T,et al. The common biology of cancer and ageing.Nature,2007,448: 767-774.

[10]Agrelo R,et al. Epigenetic inactivation of the premature agingWerner syndrome gene in human cancer. Proc Natl Acad Sci USA,2006,103: 8822-8827.

[11]http: / /seer. cancer. gov /statfacts /.

[12]Ershler WB. The change in aggressiveness of neoplasms with age.Geriatrics,1987,42: 99-103.

[13]Galluzzi S,et al. Bronchial carcinoma,a statistical study of 741necropsies with special reference to distribution of blood-bornemetastases. Br J Cancer,1955,9: 511-527.

[14]Tsuda T,et al. Role of the thymus and T cells in slow growth ofB16 melanoma in old mice. Cancer Res,1987,47: 3097-3100.

[15]Anisimov VN. Effect of host age on tumor growth rate in rodents.Front Biosci,2006,11: 412-422.

[16]Maehara Y,et al. Age-related characteristics of gastric carcinoma in young and elderly patients. Cancer,1996,77: 1774-1780.

[17]Wilson JM,et al. Cancer of the prostate. Do younger men have apoorer survival rate? Br J Urol,1984,56: 391-396.

[18]Hirayama R,et al. Differential effect of host microenvironment andsystemic humoral factors on the implantation and the growth rate ofmetastatic tumor in parabiotic mice constructed between young andold mice. Mech Aging Dev,1993,71: 213-221.

[19]Hirayama R,et al. Changes of metastatic mode of B16 malignantmelanoma in C57BL /6 mice by aging and sex. In: Likhachev A,Anisimov V,Montesano R,eds. Age-related Factors in Carcinogenesis.Lyon: IARC Scientific Publication,1985: 85-96.

[20]Kubota K,et al. Effects of age and sex of host mice on growth anddifferentiation of teratocarcinoma OTT6050. Exp Gerontol,1981,16: 371-384.

[21]Gravekamp C,et al. Behavior of metastatic and nonmetastaticbreast tumors in old mice. Exp Biol Med,2004,229: 665-675.

[22]Regina A, et al. Effect of host age on tumor-associatedangiogenesis in mice. J Natl Cancer Inst,1990,82: 44-47.

[23]Walmsley JB,et al. Tumor vasculature in young and old hosts:scanning electron microscope of microcorrosion casts withmicroangiography,light micrography and transmission electronmicroscopy. Scanning Microsc,1987,1: 823-830.

[24]Bergers G,et al. Tumorigenesis and the angiogenic switch. NatRev Cancer,2003,3: 401-410.

[25]Ershler WB,et al. B16 murine melanoma and aging: slowergrowth and longer survival in old mice. J Natl Cancer Inst,1984,72: 161-164.

[26]Ershler WB,et al. Experimental tumors and aging: local factorsthat may account for the observed age advantage in the B16 murinemelanoma model. Exp Gerontol,1984,19: 367-376.

[27]Thomas L. Reactions to homologous tissue antigens in relation tohypersensitivity. In: Lawrence HS,ed. Cellular and HumoralAspects of the Hypersensitivity Status. New York: Hoeber-Harper,1959: 529-532.

[28]Good RA. Disorders of the immune system. In: Good RA,FisherDW,eds. Immunobiology. Sinauer MA: Sunderland,1971: 3-17.

[29]Miller RA. The aging immune system: primer and prospectus.Science,1996,273: 70-74.

[30]Ershler WB,et al. Transfer of age-associated restrained tumorgrowth in mice by old-to-young bone marrow transplantation.Cancer Res,1984,44: 5677-5680.

[31]Prehn RT, et al. An immunostimulation theory of tumordevelopment. Transplant Rev,1971,7: 26-54.

[32]North RJ. The murine antitumor immune response and itstherapeutic manipulation. Adv Immunol,1984,35: 89-155.

[33]Fujimoto S,et al. Regulation of the immune response to tumorantigens. Ⅰ. Immunosuppressor cells in tumor-bearing hosts. JImmunol,1976,116: 791-799.

[34]Chen J,et al. A reduced peripheral blood CD4 + lymphocyteproportion is a consistent ageing phenotype. Mech Aging Dev,2002,123: 145-153.

[35]George AJ,et al. Thymic involution with aging: obsolescence orgood housekeeping? Immunol Today,1996,17: 267-272.

[36]Antonaci S,et al. Non-specific immunity in aging: deficiency ofmonocyte and polymorphonuclear cell-mediated functions. MechAging Dev,1984,24: 367-375.

[37]Provinciali M,et al. Evaluation of lymphokine-activated killer celldevelopment in young and old healthy humans. Nature Immunol,1995,14: 134-144.

[38]Matsuoka T,et al. Age-related changes of natural antitumorresistance in spontaneously hypertensive rats with T-celldepression. Cancer Res,1987,47: 3410-3413.

[39]Takeichi N,et al. Immunologic suppression of carcinogenesis inspontaneously hypertensive rats ( SHR) with T cell depression. JImmunol,1983,130: 501-505.

[40]Takeichi N,et al. Age-related decrease of pulmonary metastasis ofrat mammary carcinoma by activated natural resistance. CancerImmunol Immunother,1990,31: 81-85.

[41]Koga Y,et al. Activation of natural resistance against lungmetastasis of an adenocarcinoma in T-cell depressed spontaneouslyhypertensive rats by infection with Listeria monocytogenes. CancerImmunol Immunother,1985,20: 103-108.

[42]Kaesberg PR,et al. The change in tumor aggressiveness with age:lessons from experimental animals. Semin Oncol,1989,16:28-33.

[43]Ershler WB. Tumors and aging: the influence of age-associatedimmune changes upon tumor growth and spread. Adv Exp MedBiol,1993,330: 77-92.

[44]McCullough KD,et al. Age-dependent induction of hepatic tumorregression by the tissue microenvironment after transplantation ofneoplastically transformed rat liver epithelial cells into the liver.Cancer Res,1997,57: 1807-1813.

[45]Kanno J,et al. Effect of restraint stress on immune system andexperimental B16 melanoma metastasis in aged mice. Mech AgingDev,1997,93: 107-117.

[46]Ghanta VK,et al. Alloreactivity. I. Effects of age and thymichormone treatment on cell-mediated immunity in C57Bl /6NNiamice. Mech Aging Dev,1983,22: 309-319.

[47]Finkel T,et al. Oxidants,oxidative stress and the biology ofaging. Nature,2000,408: 239-247.

[48]von Zglinicki T,et al. Mild hyperoxia shortens telomeres andinhibits proliferation of fibroblasts: a model for senescence? ExpCell Res,1995,220: 186-193.

[49]Orr WC,et al. Extension of life-span by overexpression ofsuperoxide dismutase and catalase in Drosophila melanogaster.Science,1994,263: 1128-1130.

[50]Okada F,et al. The role of nicotinamide adenine dinucleotidephosphate oxidase-derived reactive oxygen species in theacquisition of metastatic ability of tumor cells. Am J Pathol,2006,169: 294-302.

[51]Okada F,et al. Involvement of reactive nitrogen oxides foracquisition of metastatic properties of benign tumors in a model of inflammation-based tumor progression. Nitric Oxide,2006,14:122-129.

[52]Tazawa H,et al. Infiltration of neutrophils is required foracquisition of metastatic phenotype of benign murine fibrosarcomacells: implication of inflammation-associated carcinogenesis andtumor progression. Am J Pathol,2003,163: 2221-2232.

[53]Kuribayashi K,et al. Essential role of protein kinase C zeta intransducing a motility signal induced by superoxide and achemotactic peptide,fMLP. J Cell Biol,2007,176: 1049-1060.

[54]Sohal RS,et al. Oxidative stress,caloric restriction,and aging.Science,1996,273: 59-63.

[55]Sawa T,et al. Protein S-guanylation by the biological signal8-nitroguanosine 3',5'-cyclic monophosphate. Nat Chem Biol,2007,3: 727-735.

[56]Wallace DC. A mitochondrial paradigm of metabolic anddegenerative diseases,aging,and cancer: a dawn for evolutionarymedicine. Ann Rev Genet,2005,39: 359-407.

[57]Ershler WB,et al. Slower B16 melanoma growth but greaterpulmonary colonization in calorie-restricted mice. J Natl CancerInst,1986,76: 81-85.

[58]Ishikawa K,et al. ROS-generating mitochondrial DNA mutationscan regulate tumor cell metastasis. Science,2008,320: 661-664.

[59]Reynolds P,et al. Social connections and risk for cancer:prospective evidence from the Alameda County Study. Behav Med,1990,16: 101-110.

[60]Wu W,et al. Social isolation stress enhanced liver metastasis ofmurine colon 26-L5 carcinoma cells by suppressing immuneresponses in mice. Life Sci,2000,66: 1827-1838.

[61]Spiegel D,et al. Effect of psychosocial treatment on survival ofpatients with metastatic breast cancer. Lancet,1989,2: 888-891.

[62]Shigemoto S,et al. Change of cell-mediated cytotoxicity withaging. J Immunol,1975,115: 307-309.

[63]Bohr VA,et al. DNA repair and its pathogenetic implications.Lab Invest,1989,61: 143-161.

[64]Baker DJ,et al. BubRl insufficiency causes early onset of agingassociatedphenotypes and infertility in mice. Nature Genet,2004,36: 744-749.

[65]Das M,et al. Suppression of p53-dependent senescence by theJNK signal transduction pathway. Proc Natl Acad Sci USA,2007,104: 15759-15764.

[66]Theophile K,et al. The expression levels of telomerase catalyticsubunit hTERT and oncogenic MYC in essential thrombocythemiaare affected by the molecular subtype. Ann Hematol,2008,87:263-268.

[67]Serrano M, et al. Oncogenic ras provokes premature cellsenescence associated with accumulation of p53 and p16INK4a.Cell,1997,88: 593-602.

[68]Tyner SD,et al. p53 mutant mice that display early ageingassociatedphenotypes. Nature,2002,415: 45-53.

[69]Francisco G,et al. XPC polymorphisms play a role in tissuespecificcarcinogenesis: a meta-analysis. Eur J Hum Genet,2008,16: 724-734.

[70]Pruitt K,et al. Inhibition of SIRT1 reactivates silenced cancergenes without loss of promoter DNA hypermethylation. PLoSGenet,2006,2: e40.

[71]http: / /www. ncbi. nlm. nih. gov /bookshelf /br. fcgi? book =gene&part = xp.

[72]Kiyohara C,et al. Genetic polymorphisms in the nucleotideexcision repair pathway and lung cancer risk: a meta-analysis. IntJ Med Sci,2007,4: 59-71.

[73]Yoon T,et al. Tumor-prone phenotype of the DDB2-deficientmice. Oncogene,2005,24: 469-478.

[74]Espejel S,et al. Mammalian Ku86 mediates chromosomal fusionsand apoptosis caused by critically short telomeres. EMBO J,2002,21: 2207-2219.

[75]Ehrlich R,et al. B16 melanoma development,NK activitycytostasis and natural antibodies in 3 and 12 month old mice. Br JCancer,1984,49: 769-777.

[76]Bodnar AG,et al. Extension of life-span by introduction oftelomerase into normal human cells. Science,1998,279:349-352.

[77]Kaptzan T,et al. Age-dependent differences in the efficacy ofcancer immunotherapy in C57BL and AKR mouse strains. ExpGerontol,2004,39: 1035-1048.

[78]Baumgart J,et al. Carcinogenesis and aging. VIII. Effect of hostage on tumour growth,metastatic potential,and chemotherapeuticsensitivity to 1. 4-benzoquinone-guanylhydrazonethiosemicarbazone( ambazone) and 5-fluorouracil in mice and rats. Exp Pathol,1988,33: 239-248.

[79]Leads from the MMWR. Years of potential life lost due to cancer-United States,1968-1985; Leads from the MMWR. Differences indeath rates due to injury among blacks and whites,1984. JAMA,1989,261: 214-216.

[80]Donin N,et al. Comparison of growth rate of two B16 melanomasdiffering in metastatic potential in young versus middle-aged mice.Cancer Invest,1997,15: 416-421.

[81]Alterman AL,et al. The role of intratumor environment indetermining spontaneous metastatic activity of a B16 melanomaclone. Invasion Metastasis,1989,9: 242-253.

[82]Pili R,et al. Altered angiogenesis underlying age-dependentchanges in tumor growth. J Natl Cancer Inst,1994,86:1303-1314.

[83]Anisimov VN,et al. Effect of age on the growth of transplantabletumors in mice. Vopr Onkol,1981,27: 52-59.

[84]Yuhas JM,et al. Responsiveness of senescent mice to theantitumor properties of Corynebacterium parvum. Cancer Res,1976,36: 161-166.

[85]Philibert JC,et al. Influence of host factors on survival in dogswith malignant mammary gland tumors. J Vet Intern Med,2003,17: 102-106.

[86]Miller FR,et al. Modulation of host resistance to metastasis in thelungs of aged retired breeder mice. Invasion Metastasis,1991,11: 233-240.

[87]Murai T,et al. Influences of aging and sex on renal pelviccarcinogenesis by N-butyl-N-( 4-hydroxybutyl ) nitrosamine inNON/Shi mice. Cancer Lett,1994,76: 147-153.

[88]Goldin A,et al. Factors influencing the specificity of action of anantileukemic agent ( aminopterin) : host age and weight. J NatlCancer Inst,1955,16: 709-721.

[89]Perkins EH, et al. A multiple-parameter comparison ofimmunocompetence and tumor resistance in aged BALB/c mice.Mech Aging Dev,1977,6: 15-24.

[90]Teller MN,et al. Influence of age of host on the chemotherapy ofmurine myeloma LCP-1. J Gerontol,1974,29: 360-365.

[91]Loefer JB. Effect of age of the donor on development of rat tumorgrafts. Cancer,1952,5: 163-165.

[92]Tagliabue A,et al. Effect of the age-related immune depressioninduced by MTV on the in vivo growth of a mammary carcinoma.Br J Cancer,1981,44: 460-463.

[93]Flood PM,et al. Loss of tumor-specific and idiotype-specificimmunity with age. J Exp Med,1981,154: 275-290.

[94]Hollingsworth MA,et al. Age-related increases in mitogenicresponses and natural immunity to a syngeneic fibrosarcoma inrats. Mech Aging Dev,1981,17: 95-106.

[95]Anisimov VN,et al. Influence of host age on lung colony formingcapacity of injected rat rhabdomyosarcoma cells. Cancer Lett,1988,40: 77-82.

[96]Ershler WB. Why tumors grow more slowly in old people. J NatlCancer Inst,1986,77: 837-839.

[97]Callies R,et al. The role of age in the course of breast cancer.Eur J Gynaecol Oncol,1997,18: 353-360.

[98]Kitamura K,et al. Clinicopathological characteristics of gastriccancer in the elderly. Br J Cancer,1996,73: 798-802.

[99]Janssen CW Jr,et al. The influence of age on the growth andspread of gastric carcinoma. Br J Cancer,1991,63: 623-625.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈