首页 百科知识 新型纳米生物材料制品研发

新型纳米生物材料制品研发

时间:2022-10-11 百科知识 版权反馈
【摘要】:目前全球生物医用材料及制品市场份额已经超过千亿美元,而我国生物材料及制品仅约数百亿元人民币,且80%以上被进口材料制品所垄断。相信随着材料科学及其制作加工工艺的不断发展,特别是纳米技术和组织工程等新技术的应用,新型纳米复合仿生组织修复材料必将展现可喜的应用前景。

5 新型纳米生物材料制品研发

13亿人口的健康问题是我国科技发展倍加关注的问题。在骨科临床上,修复严重创伤、骨肿瘤切除后所造成的大段、大块骨缺损,以及骨延迟愈合和骨不连的治疗都涉及如何促进骨再生的难题。由创伤或骨病所致关节骨、软骨缺损临床常见,严重影响患者的生活质量,已成为肢体残障的主因之一。在美国此类发病率约为1.5‰~3‰,我国约为美国的5~6倍。我国由风湿和类风湿引发的关节病患者有数百万,有7000万伴随人口老龄化的骨质疏松症患者,每年由于疾病、交通事故和运动创伤等造成的骨缺损和骨缺失患者人数约在300万以上。我国居民龋病患病率为50%,口腔有各种牙(骨)病的人数在3亿人以上。这些均涉及新型纳米生物材料及其制品的基础研究与应用开发。发展具有我国自主知识产权的纳米生物医用材料,解决组织、器官修复、替换与治疗问题,已成为我国社会经济和人民健康事业发展的重大需求。目前全球生物医用材料及制品市场份额已经超过千亿美元,而我国生物材料及制品仅约数百亿元人民币,且80%以上被进口材料制品所垄断。与发达国家相比,我国人口众多,对生物医用材料的需求量更大也更加迫切。

我们对自主研发的纳米磷灰石/聚酰胺复合材料“常压共溶复合工艺”进行了新的工艺改进,将纳米磷灰石浆液直接分散到聚酰胺溶液中,在70℃溶剂共混体中实现互溶复合,达到了高效节能目的;对溶剂进行改良,采用了价格更低的极性溶剂,进一步降低了生产成本。纳米磷灰石/聚酰胺复合材料骨修复体的力学性能与自然骨力学性能相匹配,其中抗压强度为90~120MPa;抗弯强度为60~80MPa;弹性模量为4~7GPa;断裂伸长为1%~3%。这种与人体骨匹配的力学性能可避免材料对骨的应力刺激,保证正常的人体应力的有效传递,促进组织生长和新陈代谢的发生。与骨匹配的力学性能和高的纳米磷灰石晶体含量,更是保证提供足够的力学支撑、与骨生物结合和参与骨组织重建的关键。该纳米复合生物活性材料和制品通过中国药品生物制品检定所形式检验,完成了国家药监局规定的临床验证后,分别于2005年和2007年获得了国家食品与药品监督管理局颁发的医疗器械注册证,已在临床上获得成功应用,取得了很好的临床修复效果。其中,长段承力脊柱修复体和仿生椎板,填补了国内外空白(如图13所示)。

img24

图13 纳米羟基磷灰石/聚酰胺66骨植入制品的临床应用

研究期间,申请的相关发明专利已有22项获得了国家知识产权局授权,在Adv.Material和Biomaterials等刊物上发表论文300余篇(SCI论文143篇),出版著作7部,获得国家和部省科技进步奖励7项。目前研究组正在开发一些新型制品,包括一体化关节、整形材料、可注射材料、固定钉板系统、松质骨和密质骨螺钉系统等,将进一步丰富和完善纳米复合生物活性材料的研究和应用(如图14所示)。

img25

img26

img27

图14 一体化纳米复合关节植入制品及动物实验

利用不同性质的材料复合而成的仿生生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径。相信随着材料科学及其制作加工工艺的不断发展,特别是纳米技术和组织工程等新技术的应用,新型纳米复合仿生组织修复材料必将展现可喜的应用前景。

致谢

上述研究获得国家自然科学基金(No:50972096)、国家863重点项目(编号2011AA030103)、国家973项目、国际科技合作项目和四川省科技项目的资助,在此表示感谢。

参考文献

[1] Edward S. Ahn,Nathaniel j. Gleason,Atsushi Nakahira,et al. Nanostructure processing of hydroxyapatite-based bioceramics [J]. Nano Letters,2001,1(3):149~153

[2] Daniel G. Anderson,Jason A. Burdick and Robert Langer. Smart biomaterials [J]. Science,2004,305(24):1923~1924

[3] Larry Robert Langer and David A. Tirrell. Designing materials for biology and medicine [J]. Nature,2004,428(1):487~492

[4] Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models [J]. Biomaterials,1996,17(1):31~35

[5] 俞耀庭、张兴栋. 生物医用材料[M]. 天津大学出版社,2000:122~124

[6] Li Yubao,C.P.A.T. Klein,Zhang Xingdong and K.de Groot,The Relationship Between the Colour Change of Hydroxyapatite and the Trace Element Manganese,Biomaterials,13,1993:969~972

[7] Li Yubao,J.de Wijn,C.P.A.T. Klein,S.v.d. Meer and K.de Groot,Preparation and Characterization of Nanograde Osteoapatite-like Rod Crystals,J. Mater. Sci.:Mater. in Med.,5(1994):252~255

[8] Yi ZUO,Yubao LI,Jie WEI and Yonggang YAN,Influence of Ethylene Glycol on the Formation of Calcium Phosphate Nanocrystals,Journal of Materials Science and Technology,Vol. 19,No.6,2003,628~630

[9] Hong Jiang,Yubao Li,Yi Zuo,Weihu Yang,Li Zhang,Jidong Li,Li Wang,Qin Zou,Lin Cheng,and Junfeng Li,Physical and Chemical Properties of Superparamagnetic Fe-Incorporated Nano Hydroxyapatite,J. Nanosci. Nanotechnol.(2009)9:6844~6850

[10] Xiang Zhang,Yu-Bao Li,Yi Zuo,et al. Morphology,hydrogen-bonding and crystallinity of nano-hydroxyapatite/ polyamide 66 biocomposites [J]. Composites:Part A,38(2007):843~848

[11] Zhang Xiang,Li Yubao,Lv Guoyu,et al. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites [J]. Polymer Degradation and Stability,2006,91(5):1202~1207

[12] Xuejiang Wang,Yubao Li,Jie Wei,et al. Development of biomimetic nano-hydroxylapatite/ poly(hexamethylene adipamide)composites [J]. Biomaterials,2002,23:4787~4791

[13] Wei Jie,LiYubao,Zuo Yi. Preparation of hydroxyapatite and polyamide nano-composite by co-solution [J]. Trans. of 29th annual meeting,Reno,Nevada,USA,April 30-May 3,2003:596

[14] 左奕,李玉宝,魏杰,韩劲,许凤兰,n-HA/PA系列生物医用复合材料的制备与表征,功能材料,2004,Vol.35,No.4:513~516

[15] Karen J.L. Burg,Scott Porter,James F. Kellam. Biomaterial developments for bone tissue engineering [J]. Biomaterials,2000,21:2347~2359

[16] Karagenorgiou V,Kaplan D. Porosity of 3D biomaterial scaffold and osteogenesis [J]. Biomaterials 2005,26,5474~5549

[17] Ayers R A,Wolford L M,Bateman T A,et al. Quantification of bone ingrowth into porous block hydroxyapatite in humans [J]. Biomed Mater Res,1999,47:54~59

[18] Lutolf MP,Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering [J]. Nat Biotechnol 2005,23(1):47~55

[19] Hollister SJ. Porous scaffold design for tissue engineering [J]. Nat Mater,2005,4:518~524

[20] Huanan Wang,Yubao Li*,Yi Zuo,Jihua Li,Sansi Ma,Lin Cheng,Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/ polyamide composite scaffolds for bone tissue engineering,Biomaterials,28(2007):3338~3348

[21] Holland TA,Mikos AG. Biodegradable polymeric scaffolds:improvements in bone tissue engineering through controlled drug delivery [J]. Adv Biochem Eng Biotechnol 2006;102:161~185

[22] Richardson TP,Peters MC,Ennett AB. Polymeric system for dual growth factor delivery [J]. Nat Biotechnol,2001,19:1029~1034

[23] Li JH,Li YB,Ma SC,Gao Y,Zuo Y,Hu J,Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects,Journal of Biomedical Materials Research Part A,2010,Vol. 95A,No. 4:973~981

[24] Kuangshin Tai,Franz-Josef Ulm,and Christine Ortiz. Nanogranular origins of the strength of bone [J]. Nano Letters,2006,6(11):2520~2525

[25] Kuangshin Tai,Ming Dao,Subra Suresh,et al. Nanoscale heterogeneity promotes energy dissipation in bone [J]. Nature Materials,2007,6:454~462

[26] Mamoru Aizawa,Hiroko Ueno,Kiyoshi Itatani,et al. Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations [J]. Journal of the European Ceramic Society,2006,26:501~507

[27] Zhiyong Tang,Ying Wang,Paul Podsiadlo,et al. Biomedical application of layer-by-layer assembly:from biomimetics to tissue engineering [J]. Advanced Materials,2006,18:3203~3224

[28] Quyen Q. Hoang,Frank Sichert,Andrew J. Howard,et al. Bone recognition mechanism of porcine osteocalcin from crystal structure [J]. Nature,2003,425(30):977~980

[29] Huanan Wang,Yi Zuo,Yubao Li,et al. Nano-hydroxyapatite/ polyamide66 composite tissue-engineering scaffolds with anisotropy in morphology and mechanical behaviors [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47:658~669

[30] Qu D,Li JH,Li YB,Go Y,Zuo Y,Hsu YC,Hu J,Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone engineering in reconstruction of calvarial defects,Journal of Biomedical Materials Research Part A,2011,Vol. 96A,No.3:543~551

[31] Fenglan Xu,Yubao Li*,Yingpin Deng and Jie Xiog,Porous nano-hydroxyapatite/ poly(vinly alcohol)composite hydrogel as artificial cornea fringe:characterization and evaluation in vitro,J. Biomater. Sci. Polymer,Vol.19,No.4,2008:431~439

[32] Xu Fenglan,Li Yubao*,Yao Xiaoming,Liao Hongbing and Zhang Li,Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly(vinyl alcohol)hydrogel composite,J Mater Sci:Mater Med,April,18(2007)635~640

[33] Li Jidong,Li Yubao*,Zhang Li and Zuo Yi. Composition of calcium deficient Na-containing carbonate hydroxyapatite modified with Cu(II)and Zn(II)ions. Applied Surface Science,254(2008):2844~2850

[34] Yili Qu,Ping Wang,Yi Man,Yubao Li,Yi Zuo,Jidong Li,Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane,International Journal of Nanomedicine,2010,5:429~435

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈