首页 百科知识 一个具有空前震撼力的创举

一个具有空前震撼力的创举

时间:2022-10-08 百科知识 版权反馈
【摘要】:物体通常具有气、液、固三种状态,液体与固体状态又称为“凝聚态”。目前纳米科学已大大超出了材料学的范围,根据1990年7月国际首届纳米科学与技术会议的意见,纳米科技已经涉及七大分支:即纳米物理学、纳米化学、纳米电子学、纳米材料学、纳米生物学、纳米机械学以及纳米加工、表征和测量技术。波士顿大学则制成了由78个原子构成的分子马达。

一、一个具有空前震撼力的创举

长期以来,人们认为固体物质存在着两种基本构态:长程有序的“结晶态”与短程有序的“非晶态”。物质中存在的少量缺陷:空穴、空位、离子间隙、晶界、相界等往往都被认为是不利的因素,需要加以限制甚至消除。然而科学技术的发展,又常常会引起人们的“逆向思维”,即“反其道而行之”:如果原子排列连短程有序的条件都不具备(或不完善),物质处于完全不规则的缺陷状态,会不会出现性质与功能上超凡脱俗的特异甚至于突破呢?

物体通常具有气、液、固三种状态,液体与固体状态又称为“凝聚态”。凝聚态物体中同相晶粒间的交界面称为“晶界”,晶相与晶相间的交界互称为“相界”,而凝聚态与气相的交界面则称为“表面”,各类界面的示意图如图3-1所示。

img47

图3-1 物质各类界面示意图

从几何角度而言,界面是一个几何面,不存在厚度。但是从原子排列或电子云分布的角度来看,Gibbs从热力学引进的表面概念则认为:表面大约只是具有几个原子厚度的过渡区,约0.5~2nm。金属表面约1~3个原子层,半导体为4~6个原子层,绝缘体则为10至几十个原子层,即数十至数nm。

由于物质内部原子间都承受着周围相邻原子的相互作用(设为相互吸引)力并处于低能态的稳定状态。而表面原子所处位置则由于其配位不足,只承受内部原子的吸引力(如图3-2所示),所以具有能态较高的活性状态,在较小外力作用下,便可脱离其平衡位置,或容易与其他原子结合,如吸附外界气体、产生氧化等反应,或甚至常温下(如金属钠超微粒子)即可在空气中被燃烧。

由此可见,当一个物体体积减小后,其总表面积将大大增加,例如一个1cm3立方体,其表面积为6×1cm2=6 cm2,当将其切成边长为0.5cm的等分8小块后,其表面积总和则为12 cm2。如表3-1所示为粒子尺寸与表面原子数的关系实例。由表3-1可见,当粒径由10nm降至1nm时,比表面积由90m2/g增至900m2/g,表面原子比例由20%增至99%。由于超微粒子的表面原子处于特殊的受力状态,而表面原子占据的比率又特别大,所以人们对超微粒子的超常特性的研究和应用的兴趣便不言而喻了。

img48

图3-2 物体内部原子及表面原子受力状态示意图

表3-1 微粒粒径与表面原子数及比表面积的关系

img49

所谓纳米(Nanometer,nm)是一个长度单位,1nm=10−3μ=10−9m,1nm=10Ǻ,一个氢原子的直径为1 Ǻ,所以1nm约为10个氢原子尺度。而纳米材料则是指材料或其构成颗粒尺度为1~102nm范围,即大于原子簇而小于晶粒范围的材料。目前纳米科学已大大超出了材料学的范围,根据1990年7月国际首届纳米科学与技术会议的意见,纳米科技已经涉及七大分支:即纳米物理学、纳米化学、纳米电子学、纳米材料学、纳米生物学、纳米机械学以及纳米加工、表征和测量技术。

追溯源头,我国古代早在1000多年前,就有对纳米材料运用的记载,如利用蜡烛燃烧所得的碳黑制作墨及染料以及采用SnO纳米薄膜涂在铜镜表面达到防锈目的的工艺。

最早提出纳米尺度科学和技术问题的是著名的物理学家、诺贝尔奖获得者R.P.Feynman(如图2-19所示)。1959年他在一次著名的讲演中提出:如果人类能够在原子/分子的尺度上来加工材料、制备装置,我们将有许多激动人心的新发现。并且指出,我们还需要新型的微型化仪器来操纵纳米结构并测定其性质。这样,化学将变成根据人们的意愿逐个地准确放置原子的一种技术。1974年,Taniguchi最早使用“纳米技术”(Nanotechnology)一词描述精细机械加工。20世纪70年代后期,麻省理工学院Drechsler提倡纳米科技的研究,但当时多数主流科学家对此持怀疑态度。

直到20世纪80年代初,出现了费曼所期望的纳米科技研究的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM)等微观表征和操纵技术,才对纳米科技的发展起到了积极的促进作用。与此同时,纳米尺度上的多学科交叉展现了它巨大的生命力,并迅速形成了一个具有广泛学科内容和潜在应用前景的研究领域。

近代国际纳米科技的发展大致分为三个阶段:

第一阶段(1860~1990年)为孕育探索阶段。

1860年开始了对粒径为1~100nm的胶体粒子(Colloid)的研究,建立了胶体化学。Kohshuthe曾用金属作为电极,在空气中弧光放电后获得了金属氧化物胶体溶液。1940年,Ardeume首次利用透射电子显微镜(TEM)对烟状金属氧化物纳米颗粒进行观察研究。1945年,Buk在低压惰性气体中蒸发制得纳米金属颗粒。1962年R.Kubo(日)提出超微颗粒量子限域效应(Kubo理论),获得了诺贝尔奖。1963年,Ugeda采用气体冷凝法,在高纯气体中蒸发和冷凝获得具有清洁表面的纳米颗粒,并用TEM对单个纳米晶型结构和形象进行了分析研究。1970年江崎(日)、朱兆祥、张立纲等将一定厚度纳米薄膜层进行了人工堆积,并利用分子束外延技术制得能隙大小不同的半导体多层膜,提出量子阱和超晶格的概念并完成实验制作。1984年Gleiter(美)、Siegel(德)分别在惰性气体中用凝聚法原位加压制成离子晶体CaF2和TiO2,获得室温增韧陶瓷材料。1985年Kroto等用激光加热使石墨蒸发,并在甲苯中制成高稳定性碳团簇C60及C70,在掺杂处理后材料的特性出现了非常神奇的转换:从绝缘体——金属——半导体——超导体——铁磁体,从而在世界范围内引起了C60研究的热潮。在此基础上,1990年7月在美国巴尔的摩召开了第一届国际纳米科学技术会议(NST-1),正式将纳米科学作为材料科学的一个重要分支。接着《纳米技术》与《纳米生物学》两种国际性专业期刊也相继问世。

第二阶段(1990~1994年)为研究发展阶段。

1991年Iijima(日)制备出直径为4~10μm的多壁碳钠米管,从而引发了人们对于纳米丝、纳米电缆和纳米组装体系的极大关注。1991年IBM公司O.Eigler利用STM快速在Ni表面的相同位置重复地“捡起”或“放置”一个氙原子,创造出了原子级计算机中的单原子开关技术。1992年日本将纳米材料用于微机械产品中,制成可进入人体血管的机器人,美国IBM公司还制成了超微型碳分子算盘。波士顿大学则制成了由78个原子构成的分子马达。美国国家航天局对纳米管分子轴承进行了分子力学模拟,其中轴仅为2nm的单壁碳纳米管,齿为键合在纳米管上的酶,系统还包括由2596个原子组成的多级齿轮和拨杆(如图3-3所示)。我国清华大学范守善等研制成功直径为3~50nm,长达微米量级的GaN一维半导体纳米管。从而以1994年10月3日至7日在德国斯图加特召开的第二届国际纳米材料学术会议(NST-2)为标志,结束了从20世纪80年代末到20世纪90年代中期于纳米材料界

img50

图3-3 纳米机械结构模拟图

面结构模型及微观结构理论的争论。会议认为,纳米界面结构不能用统一的模型来描述,当制备条件不同时,由于能量、缺陷、相邻晶粒取向、杂质偏析状况的差异,晶界能处于从有序到无序的过渡状态。今后对纳米材料微结构的研究,应着眼于对不同类型材料进行具体描述。

第三阶段(1994年~至今)为应用开发阶段。

在上述研究的基础上,人们能按自己的意愿设计与组装纳米结构组装体系或一维、二维、三维的纳米尺度图形材料。正如纳米材料先驱R.P. Feynmen所预言的那样:“我毫不怀疑,当我们在很小尺寸上控制物体的结构时,便可以使材料具备极其精彩多变的性质……如果有一天可以按人的意愿去安排一个个原子,将会产生多么伟大的奇迹!?”

近年来,纳米技术能使人们通过直接操纵和安排分子、原子来创造新的物质,这标志着人们认识和改造自然的能力已延伸到分子、原子的水平。并出现了一系列奇迹:人们最熟知的纳米机器就是蛋白质、脱氧核糖核酸(DNA)(如图3-23所示)以及能辅助细胞修复和再生及辅助制造蛋白质的酶,如今可根据储存的指令或控制其输入信号,实现人体器官的再造、环境的复原等惊人之举。利用扫描隧道显微镜(STM)和原子力显微镜(AFM)按需要排布单个原子,还可构成高密度数据存储器件,其密度比目前的磁盘高10亿倍,从而可实现每秒数十亿次的操作。纳米逻辑芯片装置则可控制单个电子乃至单个光子,在此基础上实现通信瞬时化。纳米器件制成的计算机的计算能力,可以提高千倍,而所需的能量仅为目前的百万分之一。纳米光电子学使通信带宽增加百倍,信息存量成千倍提高,一分钱硬币大小的存储器可以存储5兆信息单元,这样,一张光盘就可以把美国国会图书馆的书全部带走。

一位被称为“梦想家”的美国麻省理工学院青年科学家Drechsler博士,1997年就曾提出过模拟活细胞中人工装置生物分子的思考。他曾预言:“纳米科技将会像产业革命、抗生素乃至核武器那样,给人类带来极其深远的变革。”STM的发明者之一H.Rohrer博士认为:“150年前,微米成为新的精度标准,奠定了世界工业革命的基础。最早和最好学会使用微米科技的国家,都已在其后的工业发展中占据了巨大的优势。同样,未来的科技将属于那些明智地接受纳米作为新标准,并首先学习和使用它的国家。”

2000年2月,当时的克林顿政府以4.95亿美元优先实施“全美纳米科技计划”(NNI),实际上2004年投资额度已达8.5亿美元。在其《国家纳米技术倡议》中称:“纳米技术将与信息技术和生物技术一样,将引导下一场工业革命,应把它放在科学技术的顶级优先(Top priority)地位”。2004年我国政府投资2.5亿人民币建立国家纳米研究中心,目前已有100多个研究单位从事纳米基础技术和应用研究。在纳米材料制备、纳米图像有序化组装、纳米结构与特异物性、纳米功能分子与分子器件、生物芯片及基因组测量、岩矿介质的纳米颗粒分布研究等方面都取得了创新性成果。

当前,“纳米科技”这一具有空前巨大冲击波的创举,已经并正在震撼着整个世界!

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈