首页 百科知识 第节,高阶线性微分方程

第节,高阶线性微分方程

时间:2022-09-17 百科知识 版权反馈
【摘要】:二阶线性微分方程的一般形式为其中都是一次的,否则称为二阶非线性方程,其中均为连续函数。作代换,即可将原方程化为阶常系数线性微分方程。特别的,对于二阶欧拉方程令即化成了二阶线性常微分方程。二阶常系数齐次线性微分方程 二阶常系数齐次线性方程的一般形式为,其中,为实常数,其特征方程为。由于非齐次线性方程的通解,等于它的任一特解与对应齐次线性方程的通解之和。

(1/13) 二阶线性微分方程的定义

二阶线性微分方程的一般形式为  其中都是一次的,否则称为二阶非线性方程,其中均为连续函数。当右端,方程叫做齐次的;当右端不恒等于0,方程叫做非齐次的。

(2/13) 函数的线性相关与线性独立的定义

是定义在区间的两个函数,如果(常数),那么称此两函数在区间线性相关,否则,称此两函数线性独立或线性无关。

(3/13) 线性微分方程的解的结构

1)齐次线性方程解的结构 先讨论二阶线性齐次方程  定理:如果函数均是方程的解,那么也是该方程的解,其中为任意常数。 定理:如果函数是二阶齐次线性方程的任意两个线性无关的特解,那么就是该方程的通解,其中为任意常数。 推论:如果阶齐次线性方程   个线性无关的解,那么,此方程的通解为  其中为任意常数。 (2)非齐次线性方程解的结构 二阶非齐次线性方程的形式为: 定理:设是二阶非齐次线性方程的任一特解,是与该方程对应的齐次线性方程的通解,那么就是方程的通解。 定理:设有非齐次线性方程.如果分别是方程与方程的解,那么就是原方程的解。

(4/13) 常系数线性齐次方程

(1)二阶常系数齐次线性微分方程 二阶常系数齐次线性方程的一般形式为,其中,为实常数,其特征方程为。 依据判别式的符号,其通解有三种形式: (i)当,特征方程有两个相异的实根,通解的形式为  (ii)当,特征方程有重根,即,通解的形式为  (iii)当,特征方程有共轭复根重根,通解的形式为 (2)阶常系数齐次线性微分方程 阶常系数齐次线性方程的一般形式为 , 其中为常数,相应的特征方程为。特征根与通解的关系同二阶方程的情形类似,具体结论如下: (i)若个相异实根,则原方程的通解为  (ii)若为特征方程的重实根,则原方程的通解中含有  (iii)若为特征方程的重共轭复根,则原方程的通解中含有 

(5/13) 二阶常系数线性非齐次方程

二阶常系数线性非齐次方程的一般形式为,其中为实常数。由于非齐次线性方程的通解,等于它的任一特解与对应齐次线性方程的通解之和。根据f(x)具有下列特殊情形时,来给出求其特解的公式: (1) 次多项式 特解形式分为三种情况: (i)0不是特征根: (ii)0是特征方程的单根: (iii)0是特征方程的重根: (2) 次多项式 特解形式分为三种情况: (i)不是特征根: (ii)是特征方程的单根: (iii)是特征方程的重根: (3) , 次,次多项式 特解形式分为两种情况: (i)不是特征根: (ii)是特征根: 其中次多项式中的。 (4) ,特解:

(6/13) 欧拉方程

形如 的方程(其中为常数),叫做欧拉方程。作代换,即可将原方程化为阶常系数线性微分方程。 特别的,对于二阶欧拉方程      即化成了二阶线性常微分方程。

(7/13) 二阶常系数线性齐次方程

二阶常系数齐次线性微分方程 二阶常系数齐次线性方程的一般形式为,其中,为实常数,其特征方程为。 依据判别式的符号,其通解有三种形式: (i)当,特征方程有两个相异的实根,通解的形式为  (ii)当,特征方程有重根,即,通解的形式为  (iii)当,特征方程有共轭复根重根,通解的形式为 

(8/13) 二阶线性微分方程的定义

二阶线性微分方程的一般形式为  其中都是一次的,否则称为二阶非线性方程,其中均为连续函数。当右端,方程叫做齐次的;当右端不恒等于0,方程叫做非齐次的。

(9/13) 函数的线性相关与线性独立的定义

是定义在区间的两个函数,如果(常数),那么称此两函数在区间线性相关,否则,称此两函数线性独立或线性无关。

(10/13) 线性微分方程的解的结构

1)齐次线性方程解的结构 先讨论二阶线性齐次方程  定理:如果函数均是方程的解,那么也是该方程的解,其中为任意常数。 定理:如果函数是二阶齐次线性方程的任意两个线性无关的特解,那么就是该方程的通解,其中为任意常数。 推论:如果阶齐次线性方程   个线性无关的解,那么,此方程的通解为  其中为任意常数。 (2)非齐次线性方程解的结构 二阶非齐次线性方程的形式为: 定理:设是二阶非齐次线性方程的任一特解,是与该方程对应的齐次线性方程的通解,那么就是方程的通解。 定理:设有非齐次线性方程.如果分别是方程与方程的解,那么就是原方程的解。

(11/13) 常系数线性齐次方程

(1)二阶常系数齐次线性微分方程 二阶常系数齐次线性方程的一般形式为,其中,为实常数,其特征方程为。 依据判别式的符号,其通解有三种形式: (i)当,特征方程有两个相异的实根,通解的形式为  (ii)当,特征方程有重根,即,通解的形式为  (iii)当,特征方程有共轭复根重根,通解的形式为 (2)阶常系数齐次线性微分方程 阶常系数齐次线性方程的一般形式为 , 其中为常数,相应的特征方程为。特征根与通解的关系同二阶方程的情形类似,具体结论如下: (i)若个相异实根,则原方程的通解为  (ii)若为特征方程的重实根,则原方程的通解中含有  (iii)若为特征方程的重共轭复根,则原方程的通解中含有 

(12/13) 常系数线性齐次方程

(1)二阶常系数齐次线性微分方程 二阶常系数齐次线性方程的一般形式为,其中,为实常数,其特征方程为。 依据判别式的符号,其通解有三种形式: (i)当,特征方程有两个相异的实根,通解的形式为  (ii)当,特征方程有重根,即,通解的形式为  (iii)当,特征方程有共轭复根重根,通解的形式为 (2)阶常系数齐次线性微分方程 阶常系数齐次线性方程的一般形式为 , 其中为常数,相应的特征方程为。特征根与通解的关系同二阶方程的情形类似,具体结论如下: (i)若个相异实根,则原方程的通解为  (ii)若为特征方程的重实根,则原方程的通解中含有  (iii)若为特征方程的重共轭复根,则原方程的通解中含有 

(13/13) 二阶常系数线性非齐次方程

二阶齐次线性方程的一般形式为,其中为实常数。由于非齐次线性方程的通解,等于它的任一特解与对应齐次线性方程的通解之和。根据f(x)具有下列特殊情形时,来给出求其特解的公式: (1) 为n次多项式 特解形式分为三种情况: (i)0不是特征根: (ii)0是特征方程的单根: (iii)0是特征方程的重根: (2) 为n次多项式 特解形式分为三种情况: (i)不是特征根: (ii)是特征方程的单根: (iii)是特征方程的重根: (3) , 为n次,m次多项式 特解形式分为二种情况: (i)不是特征根:(ii)是特征根: 其中次多项式。 (4) , 特解: 例5 求下列微分方程 (1) (2) 解:(1) (2)


免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈