首页 百科知识 麦克风相关技术要素

麦克风相关技术要素

时间:2022-02-16 百科知识 版权反馈
【摘要】:首先,麦克风制造商应做好匹配并成对供货,同样,助听器制造商在装配完成后也应作校调,保证出厂时没有失匹配情况。当然,智能动态麦克风匹配技术并不能校正严重的不匹配问题,因此助听器使用过程中的清洁和保养仍是首先需要注意的问题。内部噪声问题由于方向性麦克风系统中低频滚降的存在,部分助听器为此引入了低频的自动补偿功能,以解决助听器整体限度降低的问题。
麦克风相关技术要素_助听器

5.6.4 麦克风相关技术要素

1.麦克风匹配

在由双麦克风组成的方向性系统中,两个麦克风的灵敏度和相位特性必须在任何时候都得到严格的匹配,保证其具有很好的一致性,否则所设计的方向特性将会产生偏移。麦克风匹配包含两个方面:灵敏度匹配和相位匹配。

(1)灵敏度匹配

助听器制造商都会在生产装配每一个助听器时校调每一对麦克风的灵敏度,但这并不能彻底解决问题,因为存在通常所说的“麦克风漂移”。因为当助听器投入使用后,随着持续的佩戴,麦克风的灵敏度等特性将随着元器件的老化而发生变化,而且高温和潮湿也会加速这种变化,但重要的是两个麦克风性能的变化程度往往是存在一定差异的,而这种差异恰恰是引起两个麦克风灵敏度失匹配的关键所在,也是导致麦克风方向性性能下降的主要原因,特别是在低频段。

麦克风相位失配也是导致极性图改变的原因之一。

首先,麦克风制造商应做好匹配并成对供货,同样,助听器制造商在装配完成后也应作校调,保证出厂时没有失匹配情况。

其次,麦克风特性发生变化的时间和程度都是无法随时预知的。理论上,在助听器使用一段时间后,需将助听器送回厂家重新校调,以避免“麦克风漂移”现象的出现。当然这十分麻烦,因此,为了方便使用并保持稳定的方向性,目前某些高端助听器出现了智能动态麦克风匹配技术。该技术不仅可对出厂时的助听器麦克风性能参数进行记忆,在使用过程中实时监测两个麦克风的输出和在相位及灵敏度上的性能变化,并在电路中对两个麦克风加以相应的补偿和校正,使麦克风的信号输出大致相同,以保证麦克风间长期稳定的匹配。同时,该技术还能够区分麦克风的暂时变化和长久变化,通过校正使之与正常麦克风之间的偏差逐渐减小,尽可能接近完美匹配,并保存最新数据。因此,动态麦克风匹配的调整精度需达到0.1dB。当然,智能动态麦克风匹配技术并不能校正严重的不匹配问题,因此助听器使用过程中的清洁和保养仍是首先需要注意的问题。

2.低频滚降(roll off)

如上所述,助听器的方向性功能主要是基于不同麦克风之间信号叠加抵消的原理实现的,因此,所有方向性系统无论采用何种方式实现,均会遭受相同的问题:低频滚降,即低频信号的灵敏度呈坡度下降。就单一方面而言,低频滚降在存有很多低频噪音的环境中(如风扇声中)的存在是助听器佩戴者所希望的,然而对于具有较大低频听力损失的助听器佩戴者而言,该种低频滚降是十分有害的,这将严重影响其对言语信号的识别。

(1)低频滚降存在的原因

对于一个从正前方入射的纯音信号,无论是低频信号还是高频信号,到达差分器时它们间的时差应该是外部延时和内部延时之和(Te+Ti)。但高低频信号在相同时差下对相位的改变是不同的,信号频率越低则后麦克风的输出在相位上的滞后越少,即两个信号越相似,进入差分器后就会被抵消得越多。由此可见,低频滚降与外部延时和内部延时之和(Te+Ti)有关,时延之和越大,则相位差越大,抵消越少,也就是说,两麦克风口间距离越大,低频滚降越少。

声波的频率与波长成反比,高频声波的波长短,低频声波的波长长。相同的时延高频声波波长的变化大,即相位变化大,方向性效果明显;低频声波则相反。

f=c/λ

式中:f为频率,c为声速,λ为波长。

(2)解决低频滚降的方法

当然低频滚降完全可以通过控制增益、提升低频区域的灵敏度等手段,达到使整个系统恢复到平坦的频响特征的目的,但随之而来的问题是,这也将导致内部麦克风噪音的放大,最终是实际的信噪比并未得到提升。而事实上这种麦克风内部噪音在嘈杂环境下的确可以被掩蔽,但在十分安静的环境下,若麦克风仍处于方向性模式,该麦克风内部噪声就能被助听器佩戴者所听到。因此,具备方向性功能的助听器必须设有可供佩戴者切换方向性模式的办法,特别是对于助听器制造商而言,应衡量体积和低频滚降效应,合理选择双麦克风间的距离。

3.噪声

(1)风噪声问题

风噪声是风通过头部和肩部时由层流变成涡流而产生的。对于普通人而言,由于鼓室位置较深以及耳屏和耳道的遮挡,通常不受影响。而对于助听器佩戴者而言,麦克风口距离噪声源很近,因此,风噪声对其或多或少地存在干扰,特别是对于佩戴具备方向性功能助听器的用户而言,受到的影响将更明显。因为方向性麦克风不仅具有对近场声音更为敏感的特性,更重要的是方向性功能不仅不能有效地抑制风噪声,相反有些助听器对方向性功能具有低频补偿功能,反而会加大风噪声的干扰。故在有风噪声的情况下就需要关闭方向性功能,变成全向性,才能起到减轻风噪声干扰的作用。因此,具备方向性功能的助听器,设有能让用户自行切换麦克风设置的功能(在方向性和非方向性之间)是很有必要的。

(2)内部噪声问题

由于方向性麦克风系统中低频滚降的存在,部分助听器为此引入了低频的自动补偿功能,以解决助听器整体限度降低的问题。然而事实上麦克风和线路本身均具有一定的本底噪声,因此,助听器在对低频进行补偿的同时,相对的本底噪声也将被放大,尤其是在多麦克风的方向性系统中,麦克风数量越多,本底噪声相对也将越大。

但是,在实际的使用过程中,听力损失较重的佩戴者对这部分本底噪声并不敏感,而较大的周围环境声也会在一定程度上掩盖这部分本底噪声,同时如果开有通气孔,因为一部分低频能量可以通过通气孔释放,因此也能够减轻本底噪声对佩戴者造成的影响。另外,目前数字助听器流行的低压缩拐点技术(lowlevelextension)正是针对减轻细微的低水平机械噪声所研发的,能很大程度地减小助听器内部的本底噪声,以满足佩戴者清晰度和舒适度的需求。

4.验配定制

(1)通气孔

通气孔可以降低堵耳效应,能够促进耳道内外气压的平衡,但也会使来自佩戴者后侧的低频噪声直接进入耳道。特别是随着通气孔直径的增加,方向性麦克风低频区域(250~1000Hz)的方向性指数也将降低,因此选用方向性麦克风系统时应尽量避免使用直径较大的通气孔。

(2)麦克风口位置

耳背式助听器的麦克风口需处于同一水平冠状面,偏差应≤10°;而耳内式助听器则需注意佩戴者的对耳屏是否遮挡了麦克风口。

5.环境

(1)混响

在封闭的室内由于声波在传导过程中碰到坚硬物体表面(如墙壁、天花板、地面等)被折回,造成声音的延长,形成混响。因此,混响声滞后于未经折回直接到达的言语声,往往会掩蔽随后直接到达的言语声,降低言语分辨率。而房间越大,混响时间越长,方向性优势降低也将越明显。

(2)噪声源的数量及位置

尽管方向性麦克风技术隶属于助听器降噪技术的一种,但是对于噪声源的数量和位置却有一定的要求。因此,当噪声源的数量增多或者噪声源的方向与言语信号的方向一致时,方向性麦克风技术的降噪能力将会大幅度降低。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈