首页 百科知识 传输层设备

传输层设备

时间:2022-10-13 百科知识 版权反馈
【摘要】:ATM技术具有电路交换和分组交换的双重性。ATM交换有两条根本点:信元交换和各虚连接间的统计复用。统计复用表现在各虚连接的信元竞争传送信元的交换介质等交换资源。排队机制是ATM交换中一个极为重要的内容,队列的溢出会引起信元丢失,信元排队是交换时延和时延抖动的主要原因,因此排队机制对ATM交换机性能有着决定性的影响。

5.2.3 传输层设备

传输层有IP路由器、ATM交换机等分组网核心设备。

1.路由器

传统路由器工作于OSI七层协议的第3层,其主要任务是接收来自于一个网络接口的数据包,根据其中包含的目的地址,决定转发下一个目的地址。因此,路由器首先得在路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC(Medium Access Control)地址,同时IP数据包头的TTL(Time To Live)域也开始减数,并计算新的校验名。当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。

根据TCP/IP,路由器的数据包转发具体过程是:网络接口接收数据包,这一步由网络物理层处理,即把经编码调制后的数据信号还原为数据。根据网络物理接口,路由器调用相应的链路层功能模块,以解释处理此数据包的链路协议报头。这一步处理比较简单,主要是对完整性的验证,如CRC校验、帧长度检查。在链路导层完成对数据帧的完整性验证后,路由器开始处理此数据帧的IP层。这一过程是路由器功能的核心。根据数据帧IP包头的目的地IP地址,路由器在路由表中查找下一跳的IP地址,IP数据包头的TTL域开始减数,并计算新校验和(Check-sum)。根据路由表中所查到的下一跳IP地址,将IP数据包送往相应的输出链路层,封装上相应的链路层包头,最后经输出网络物理接口发送出去。

数据在由某个交换端口向目的端发送时,由于端口所连接的网络拓扑结构及其网络类型存在的差异,例如由以太网交换端口向FDDI交换端口进行数据发送,因此要求对数据包帧结构、长度进行重组。针对一个数据包由端口A向端口B转发,具体的数据包路由交换步骤如下:

(1)数据包进入端口A,去掉数据包的前导码和物理层源、目的MAC地址、CRC校验码;

(2)3层以上数据通过数据总线D-BUS进入共享内存中的数据包缓存;

(3)共享式缓存取出数据包的目的网络地址,通过D-BUS送CPU进行选路处理;

(4)由CPU在交换式缓存中检索匹配的网络/主机地址,如果检索到,进入第七步;

(5)CPU在路由表中检索匹配的网络/主机地址,得到目的交换端口;

(6)将检索到的信息追加入快速缓存,或者替换高速缓存中的原有数据;

(7)检索到的目的交换端口经D-BUS传回共享内存;

(8)共享内存通过交换技术将数据包发往目的端口,目的端口接到数据包后,重新按照目的网络的类型重写帧,加入相应的第二层地址,重新计算CRC数值。

简单地说,路由器的主要工作就是为经过路由器的每个数据帧寻找一条最佳传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径策略或叫选择最佳路由算法是路由器的关键所在。

为了完成这项工作,在路由器保存着各种传输路径的相关数据——路由表,供选择路由时使用。路径表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名称等内容。路由表可以是由系统管理员固定设置好的,也可以由系统动态修改;可以由路由器自动调整,也可以由主机控制。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。

当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP子网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(Default Gateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。

路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。

传统的路由器在转发每一个分组时,都要进行一系列的复杂操作,包括路由查找、访问控制表匹配、地址解析、优先级管理以及其他的附加操作。这一系列的操作大大影响了路由器的性能与效率,降低了分组转发速率和转发的吞吐量,增加了CPU的负担。而经过路由器的前后分组间的相关性很大,具有相同目的地址和源地址的分组往往连续到达,这为分组的快速转发提供了实现的可能与依据。新一代路由器,如IP Switch、Tag Switch等,就是采用这一设计思想用硬件来实现快速转发,大大提高了路由器的性能与效率。

新一代路由器使用转发缓存来简化分组的转发操作。在快速转发过程中,只需对一组具有相同目的地址和源地址的分组的前几个分组进行传统的路由转发处理,并把成功转发的分组的目的地址、源地址和下一网关地址(下一路由器地址)放入转发缓存中。当其后的分组要进行转发时,首先查看转发缓存,如果该分组的目的地址和源地址与转发缓存中的匹配,则直接根据转发缓存中的下一网关地址进行转发,而无须经过传统的复杂操作,大大减轻了路由器的负担,达到了提高路由器吞吐量的目标。

2.ATM交换机

ATM即异步传输模式(Asynchronous Transfer Mode),是一种面向连接的快速分组交换技术,建立在异步时分复用基础上,并使用固定长度的信元,支持包括数据、话音、图像在内的各种业务的传送。ATM技术具有电路交换和分组交换的双重性。

ATM交换有两条根本点:信元交换和各虚连接间的统计复用。信元交换即将ATM信元通过各种形式的交换媒体,从一个VP/VC交换到另一个VP/VC上。统计复用表现在各虚连接的信元竞争传送信元的交换介质等交换资源。为解决信元对这些资源的竞争,必须对信元进行排队,在时间上将各信元分开,借用电路交换的思想,可以认为统计复用在交换中体现为时分交换,并通过排队机制实现。

排队机制是ATM交换中一个极为重要的内容,队列的溢出会引起信元丢失,信元排队是交换时延和时延抖动的主要原因,因此排队机制对ATM交换机性能有着决定性的影响。基本排队机制有3种:输入排队、输出排队和中央排队。这3种方式各有缺点,如输入排队有信头阻塞,交换机的负荷达不到60%;输出排队存储器利用率低,平均队长要求长;而中央排队存储器速率要求高、存储器管理复杂。

为实现大容量的交换,也为了增加ATM交换机的可扩展性,往往构造小容量的基本交换单元,再将这些交换单元按一定的结构构造成ATM交换机构(Fabric),对于ATM交换机构来说,研究的主要问题是各交换单元之间的传送介质结构及选路方法,以及如何降低竞争,减少阻塞。

ATM交换机是用于ATM网络的交换机产品。但由于ATM网络独特的技术特性,现在还只广泛用于电信、邮政网的主干网段。相对于物美价廉的以太网交换机而言,ATM交换机的价格实是很高的,所以在普通局域网中见不到它的踪迹。

ATM交换机分为时分交换和空分交换,其中时分交换包括共享总线、共享环和共享存储器结构,空分交换包括全互连网和多级互连网。

ATM信元交换机的通用模型有一些输入线路和一些输出线路,通常在数量上相等(因为线路是双向的)。在每一周期从每一输入线路取得一个信元(如果有的话),通过内部的交换结构(Switching Fabric),并且逐步在适当的输出线路上传送。从这一角度上来看,ATM交换机是同步的。

交换机可以是流水线的,即进入的信元可能过几个周期后才出现在输出线路上。信元实际上是异步到达输入线路的,因此有一个主时钟指明周期的开始。当时钟滴答时完全到达的任何信元都可以在该周期内交换,未完全到达的信元必须等到下一个周期。

信元通常以ATM速率到达,一般在150Mbit/s左右,即大约超过360 000信元/s,这意味着交换机的周期大约为2.7μm。一台商用交换机可能有16~1 024条输入线路,即它必须能在每2.7μm内接收和交换16~1 024个信元。在622Mbit/s的速率上,每700ns就有一批信元进入交换结构。由于信元是固定长度并且较小(53B),这就可能制造出这样的交换机。若使用更长的可变长分组,高速交换会更复杂,这就是ATM使用短的、固定长度信元的原因。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈