首页 理论教育 细胞学与其他学科的关系

细胞学与其他学科的关系

时间:2022-02-14 理论教育 版权反馈
【摘要】:细胞学与其他学科的关系要工作,要勤劳:劳作是最可靠的财富。到今天,不仅是研究活细胞的各方面,甚至对许多其他学科来讲也是必不可缺的技术。动物方面的组织化学和细胞化学的研究开展较晚。珀尔斯1867年用普鲁士兰显示细胞中的铁质,克文克1868年用黄色硫化胺溶液与细胞中的铁质化合成为黑色的硫化亚铁进行显示等方法,至今仍在应用。
细胞学与其他学科的关系_从列文虎克谈细胞

细胞学与其他学科的关系

img73

要工作,要勤劳:劳作是最可靠的财富

——拉·封丹

一、细胞学与胚胎

对细胞功能,不能像研究结构那样,在一团组织里找一个细胞作为研究对象。卵子是研究细胞极为方便的材料。既然用卵子,研究它各部分的作用当然要根据对发育中的影响来判断。早期胚胎学的研究证明细胞核在遗传潜能上是等同的,只是在以后的发育中,通过细胞质或细胞间的相互作用才受到不同的调节而产生不同。

img74

淋巴细胞与单核细胞超微结构模式图

这样一来对于细胞核的作用也有了充分的估价。当时已认识到各个染色体有质的不同,染色体是有个性的。总论当时的成就,1883年德国胚胎学家鲁曾经表达这样的设想:“不仅染色体,而且每一染色体的各个部分,对于决定个体的生理和形态可能都是相当重要的。”1887年德国动物学家魏斯曼提出种质的假说。胚胎学的研究还为细胞学提供了重要的实验方法,这就是组织培养。到今天,不仅是研究活细胞的各方面,甚至对许多其他学科来讲也是必不可缺的技术。

二、细胞学与遗传学

img75

三种粒细胞超微结构模式图

细胞遗传学是遗传学与细胞学相结合的一个遗传学分支学科。研究对象主要是真核生物,特别是包括人类在内的高等动植物。早期的细胞遗传学着重研究分离、重组、连锁、交换等遗传现象的染色体基础以及染色体畸变和倍性变化等染色体行为的遗传学效应,并涉及各种生殖方式如无融合生殖、单性生殖以及减数分裂驱动等方面的遗传学和细胞学基础。以后又衍生出一些分支学科,研究内容进一步扩大。

1900年重新发现孟德尔的研究成就后,研究有力地推动了细胞学的进展。美国遗传学家和胚胎学家摩尔根研究果蝇的遗传,开始从细胞解释遗传现象,发现遗传因子可能位于染色体上。利用突变型与野生型杂交,并且对其后代进行统计处理,可以推算出染色体的基因排列图。在寻找遗传的物质基础的推动下,染色体的研究在面上铺展开了许多其他动、植物物种的细胞分裂、染色体行为、染色体图谱都被研究过。广泛开展的性染色体形态的研究,也为雌雄的决定找到细胞学的基础。有的动物是XX、XY型,有的是ZZ、ZW型。细胞学和遗传学联系起来,从遗传学得到定量的和生理的概念,从细胞学得到定性的、物质的和叙述的概念,逐步产生出。

img76

列文虎克绘制的显微镜下微生的形态

img77

周围神经纤维髓鞘形成及鞭超微结构模式图

在1901~1911年间美国细胞学家麦克朗、史蒂文斯和威尔逊等先后发现在直翅目和半翅目昆虫中雌体比雄体多了一条染色体,即X染色体,从而揭示了性别和染色体之间的关系;1902~1910年英国遗传学家贝特森等把孟德尔定律扩充到鸡兔等动物和香豌豆等植物中,并且创造了一系列遗传学名词:遗传学、同质结合、异质结台、等位基因、相引和相斥等,奠定了孟德尔遗传学的基础;从1910年到20年代中期,美国遗传学家摩尔根、布里奇斯和斯特蒂文特等用果蝇作为研究材料,用更为明确的连锁和交换的概念代替了相引和相斥,发展了以三点测验为基础的基因定位方法,证实了基因在染色体工作线性排列,从而使遗传的染色体学说得以确立。细胞遗传学便在这一基础上迅速发展。

从细胞遗传学衍生的分支学科主要有体细胞遗传学——主要研究体细胞,特别是离体培养的高等生物体细胞的遗传规律;分子细胞遗传学——主要研究染色体的亚显微结构和基因活动的关系;进化细胞遗传学——主要研究染色体结构和倍性改变与物种形成之间的关系;细胞器遗传学——主要研究细胞器如叶绿体、线粒体等的遗传结构;医学细胞遗传学,这是细胞遗传学的基础理论与临床医学紧密结合的新兴边缘科学,研究染色体畸变与遗传病的关系等,对于遗传咨询和产前诊断具有重要意义。

img78

液泡

孟德尔定律揭示了以有性生殖为基础的遗传学规律。但是生物界中还存在着各种不同的生殖方式,例如无融合生殖、孤雌生殖、孤雄生殖。在通过这些生殖方式得到的子代中,性状比例不符合孟德尔比例。此外在一般有性生殖过程中也可能出现不符合孟德尔定律的现象,例如减数分裂驱动这些现象的研究同样属于细胞遗传学范畴。

细胞遗传学是遗传学中最早发展起来的学科,也是最基本的学科。其他遗传学分支学科都是从它发展出来的,细胞遗传学中所阐明的基本规律适用于包括分子遗传学在内的一切分支学科。

三、细胞学与生理学

img79

染色质

在这个阶段用实验方法研究细胞其他部分的功能,没有得到使人满意的结果。在那时看来,在通透性方面细胞膜都是被动的;但是细胞还能够逆着扩散梯度或浓度梯度主动地摄入或排出某些物质。那时对细胞呼吸的理解主要局限于食物经过各种的作用产生出热量。了解到食物在细胞中的燃烧不是通过一次突然的氧化而把全部能量以热的形式释放出去,而是逐渐地通过一个个小的阶段,一步一步地获得并且利用少量的能量的过程。

四、细胞学与化学

img80

线粒体

细胞化学是研究细胞的化学成分,及其在细胞活动中的变化和定位的学科。即在不破坏细胞形态结构的状况下,用生化的和物理的技术对各种组分做定量的分析,研究其动态变化,了解细胞代谢过程中各种细胞组分的作用。

细胞化学和组织化学的发展是分不开的,都是建立在细胞学、组织学以及生物化学的基础上。对细胞中的不同组分进行区别着色是细胞化学中最基础的工作。19世纪初叶,法国植物学家拉斯帕伊在研究禾本科植物的受精作用时,首次发现了淀粉的碘反应。此后他还建立了蛋白质的黄色反应,硫酸对于糖醛及蛋白质醛基反应等鉴定方法,因此他被认为是组织化学的创始人。

动物方面的组织化学和细胞化学的研究开展较晚。珀尔斯1867年用普鲁士兰显示细胞中的铁质,克文克1868年用黄色硫化胺溶液与细胞中的铁质化合成为黑色的硫化亚铁进行显示等方法,至今仍在应用。

img81

粒细胞

1844年米利翁叙述了蛋白质反应,1853年霍夫曼指出,这个反应实际上是一个测定酪氨酸的方法,直至1888年,莱特格尔才开始利用米氏反应进行研究工作。1868年克莱布斯和1872年施特鲁韦分别显示出组织中酶的存在。他们指出树胶酊遇脓变成蓝色,这是确定组织中有过氧化物酶存在的首次报道。

1895年埃尔利希用“纳笛”反应首次显示细胞色素氧化酶。在异色性方面,甲基紫显示糖蛋白;天竺牡丹显示肥大细胞、唾液腺黏液;杂硫氧苯染料如亚甲蓝、硫堇、亚甲绿、甲苯胺蓝、天青蓝等对多糖的异色性染色亦相继被发现。

组织化学、细胞化学是在形态学和生物化学已有一定基础,苯胺染料技术发展到高峰的20世纪40年代才活跃起来的。本克1862年首次应用苯胺染料,这是组织学方法上的一次革命。1936年比利时的组织化学家利松的《动物组织化学》一书总结了组织化学的优缺点及发展的方向,把组织化学推向高潮。

用于细胞化学研究的染料可以是碱性的也可以是酸性的。酸性染料的生色基团是硝基和醌基;碱性染料的生色基团,包括着偶氮基吲胺基。染色的原理是基于在酸性染料中具有染色作用的阴离子和细胞内的碱性物质相结合,而碱性染料中的阳离子和细胞内的酸性物质相结合,所以酸性的细胞成分被碱性染料所染色,而碱性的细胞组分则被酸性染料染色。

原位细胞化学所用的方法多是把单层的培养细胞,或把恒冷箱制备的新鲜而又薄的冰冻切片放在一定溶液内温育,使待测的物质或酶与染料或试剂发生专一性的反应,要求在原位上直接形成或变为不溶解的产物。有颜色的产物用光学显微镜,荧光产物则用荧光显微镜,吸收紫外光的物质用石英或反射显微镜,观察其在细胞结构上的分布。高电子密度产物可在电子显微镜下观察。

细胞化学对酶的研究一般是将薄的冰冻切片用适宜的底物温育,然后来测定酶在细胞内的位置。组织化学家格莫里是最早进行这方面工作的科学家,他在测定碱性磷酸酶时是用甘油磷酸钠为底物,酶水解释放的磷酸根与底物溶液中的某些离子结合产生非溶性的金属盐,后又转变成金属铅,硫化铅,硫化钻及其他有色的化合物而得以显示出来。利用物理技术研究各种细胞组分的方法主要有细胞光度法、荧光显微法、免疫细胞标记等。细胞光度法是利用某些细胞组分会吸收不同的紫外光的特点进行研究区分,如核酸吸收光波是260纳米,蛋白质是280纳米,有些染色反应产物也有对可见光谱的特异吸收能力,都可用细胞光度计进行定量分析。

细胞化学未来的发展方向是如何将细胞超微结构与局部的化学分析联系起来,这将会对研究细胞成分方面起重要作用,还为自动影像分析技术提供更多的新染色方法,使细胞组分着色对比清晰,便于细胞精细结构进行定量测定。

定量细胞化学虽是细胞化学发展的主要方向,但仍有不少困难。有关仪器方面的问题已逐渐得到解决;但在固定细胞,反应的化学计算方法和反应产物的弥散等方面仍存在不少困难。判断任何定量细胞化学方法均有赖于用正确的模式系统,还要与其他方法所得的结果进行比较,方能满足今后研究的需要。细胞化学的研究在农业、医药、医疗等学科和方面都有着广泛的应用,如癌细胞检测等。

五、细胞学与其他学科

首先是电子显微镜的应用产生了超显微形态学。比利时动物学家布拉谢利用专一的染色方法研究核酸在发育中的意义。差不多与此同时,瑞典生化学家卡斯珀松创建了紫外线细胞分光光度计,来检测蛋白质、DNA和RNA这些物质在细胞中的存在。在他们工作的基础上发展起了细胞化学。20世纪40年代开始逐渐开展了从生化方面研究细胞各部分的功能的工作,产生了生化细胞学。放射性同位素的应用也为研究细胞中的代谢过程开辟了新的途径。

可以看出,对于细胞的研究,在使用电子显微镜后在亚显微结构方面的深入,以及在应用生化技术后在功能方面的深入,已经在为细胞生物学在分子水平上研究细胞的生命现象的形成创造了条件。所以在后来,在分子遗传学和分子生物学优异的成就的影响之下,细胞生物学这一新的学科很快地形成了。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈