首页 百科知识 第二个改正

第二个改正

时间:2022-09-26 百科知识 版权反馈
【摘要】:相比较而言,解释第二个改正比第一个较为困难,因为这里面涉及到各种能级图的重要、复杂的特性。只有这类“同分异构体”的跃进才是生物学应用中最为感兴趣的,这是我们提出的“第二个改正”。这是因为这种跃进对分子的化学稳定性没有什么实质性的贡献;由于阻止它们往回走的东西不存在,所以当它们发生跃进时,几乎同时也就恢复到原来的状态了。

相比较而言,解释第二个改正比第一个较为困难,因为这里面涉及到各种能级图的重要、复杂的特性。之所以复杂而且重要,是因为两个能级之间的自由通路有可能被堵塞,于是便根本谈不上供给所需要的能量的跃进问题了;而且事实上,从较高状态到较低状态通路被堵塞的可能性也是非常大的。

为了有力地说明这一点,还是让我们从基本的经验事实说起吧。化学家们都知道,相同的原子团由于不同的组合方式,就会形成不同的分子;我们把这种分子叫做同分异构体。这种情况的出现是有规律的,并不是偶然现象。分子越大,同分异构体也就越多。图11给出了一个最简单的例子,两种丙醇同样由3个碳原子(C)、8个氢原子(H)和一个氧原子(O)组成29,氧可以插入任何氢和碳之间,但只有图中所显示的那两种情况才可以形成自然界中真正存在的物质。这两个分子的物理常数和化学常数是不同的,我们一眼就可以看出;不仅如此,它们的能量也不同,具有“不同的能级”。

图11 两种丙醇的同分异构体

不过,有一点可以肯定,那就是两个分子的状态都很稳定,就像它们总是处于“最低状态”那样,从一种状态转化到另一种状态的自发跃进的概率几乎微乎其微。

那么,是什么原因造成这两个分子的稳定状态呢?理由是这是两种完全不同的分子模型,没有任何一种接近的模型位于两者之间;而要从一种模型跃进到另一种模型,显然只能通过中间模型才有可能发生。即便是有这种中间模型存在的可能,由于其所需要的能量远远高于这两个分子模型中的任何一个。也就是说,为了变换氧原子的位置,需要具备相当高能量的模型作为中介,否则是没有办法完成跃进的。这种情况可从图12中看出。其中1和2代表了两个同分异构体,3代表了它们之间的“阈”,两个箭头指代“跃进”量,分别代表为了产生从状态1变化到状态3或者从状态2变化到状态3所需要的能量。

只有这类“同分异构体”的跃进才是生物学应用中最为感兴趣的,这是我们提出的“第二个改正”。在本章第4节到第6节中解释“稳定性”时已经谈论到了这些跃进。从一个相对稳定的分子模型变到另一个构型,就是我们所说的“量子跃进”。从图12中可以看出,供给跃进所需要的能量(其数量用W表示)是指从初始能量级上升到阈的能量差(见图12中的箭头),是一个相对值,并不是绝对意义上的真正的能量级差。

图12 在同分异构体的能级1和2之间的阈能3。箭头表示转变所需的最小能量

人们或许会问,没有阈的跃迁的介入的初态和终态是什么样的情况呢?其实,这种情况多数是不为人所关注的,在生物学的应用上也是这个样子。这是因为这种跃进对分子的化学稳定性没有什么实质性的贡献;由于阻止它们往回走的东西不存在,所以当它们发生跃进时,几乎同时也就恢复到原来的状态了。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈