首页 理论教育 其他的分子生物学研究

其他的分子生物学研究

时间:2022-03-12 理论教育 版权反馈
【摘要】:10q,11q13和13q部位的杂合性缺失与垂体腺瘤的侵袭性有关,9p部位的缺失和p16基因的甲基化可能在垂体腺瘤发生的早期事件。其他的常染色体缺失的频率少于6%。在过去的几年里垂体瘤的分子生物学研究获得了飞快的进展,相信随着研究技术的进步,在未来的研究中将会获得越来越多的垂体瘤的分子生物学知识,会进一步增进我们对这种疾病的认识。将来的研究需明确相应的分子生物学的改变是否能够预测后来的垂体腺瘤的肿瘤行为和指导临床治疗。

垂体瘤的细胞遗传学分析表明核型的异常,主要涉及到1、4、7和19号染色体,对25例垂体腺瘤的分析发现,染色体获得性增加常见于X、7、8和5号染色体,而染色体丢失常见于11、9和13号染色体,染色体的结构异常较为少见,染色体的丢失和结构异常与肿瘤的生物学行为有一定关系。在散发的分泌生长激素的垂体瘤中发现了11q13部位的异常,11号染色体的11q13区域与Ⅰ型多发性内分泌肿瘤(multiple endocrine neoplasm,MEN)的发生有关,这种肿瘤综合征可涉及垂体、甲状旁腺和胰腺等腺体。10q,11q13和13q部位的杂合性缺失与垂体腺瘤的侵袭性有关,9p部位的缺失和p16基因的甲基化可能在垂体腺瘤发生的早期事件。p53、CREB、GHRH、nm23、p16和p27等基因状态和表达的改变参与了垂体腺瘤发病的多步骤的过程。Boggild等应用PCR技术对88例患者的垂体瘤研究中发现,36%的肿瘤存在Gsα的激活显性突变,对16例的肿瘤研究发现18%的肿瘤存在11号染色体的缺失,这种缺失主要发生在GH腺瘤、催乳素瘤、ACTH腺瘤和非功能腺瘤。其他的常染色体缺失的频率少于6%。在对2例侵袭性腺瘤的研究中发现了多处的常染色体缺失,这提示这种肿瘤的发展可能是一个多步骤渐进的过程,有趣的是,他们没有发现几种常见的癌基因的扩增和重排,包括N-ras、Myc、H-ras和fos。

最近的研究表明,肿瘤抑制基因MEN1的突变和印记(imprinting)在散发的垂体瘤的病理发生中不起决定作用,但在这类肿瘤的亚组中可能发挥重要作用。

垂体瘤中偶尔发现的遗传不稳定性,包括常染色体的缺失,提示这种肿瘤的发生是一个渐进的、多步骤的过程。但与其他肿瘤相比,垂体瘤的病理进程又有很大的不同,例如结肠癌的多步骤进展伴随多个基因的异常,病情的后期必然导致肿瘤转移,但人类垂体瘤的转移却极为罕见,垂体瘤和其他内分泌肿瘤抑制肿瘤转移的确切分子机制目前还不清楚。

在过去的几年里垂体瘤的分子生物学研究获得了飞快的进展,相信随着研究技术的进步,在未来的研究中将会获得越来越多的垂体瘤的分子生物学知识,会进一步增进我们对这种疾病的认识。将来的研究需明确相应的分子生物学的改变是否能够预测后来的垂体腺瘤的肿瘤行为和指导临床治疗。

(杨立业 惠国桢)

参考文献

[1] Lloyd RV. Molecular pathology of pituitary adenomas. J Neurooncol, 2001,54(2): 111-119.

[2] Fehn M, Farquharson MA, Sautner D, et al. Demonstration of pro-opiomelanocortin mRNA in pituitary adenomas and para-adenomatous gland in Cushing's disease and Nelson′s syndrome. J Pathol, 1993,169(3):335-339.

[3] Lloyd RV, Jin L, Fields K, et al. Analysis of pituitary hormones and chromogranin A mRNAs in null cell adenomas, oncocytomas, and gonadotroph adenomas by in situ hybridization. Am J Pathol, 1991,139(3):553-564.

[4] Clayton RN, Farrell WE. Clonality of pituitary tumours: more complicated than initially envisaged? Brain Pathol, 2001,11(3):313-327.

[5] Alexander JM, Biller BM, Bikkal H, et al. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest, 1990,86(1):336-340.

[6] Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer, 2002, 2(11):836-849.

[7] Yoshimoto K, Iwahana H, Fukuda A, et al. Rare mutations of the Gs alpha subunit gene in human endocrine tumors. Mutation detection by polymerase chain reactionprimer-introduced restriction analysis. Cancer, 1993,72(4):1386-1393.

[8] Evans CO, Young AN, Brown MR, et al. Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab, 2001,86(7):3097-3107.

[9] Spada A. Genetic aspects of pituitary tumors. J Pediatr Endocrinol Metab, 2001,14 Suppl 5:1213-1216.

[10] Boggild MD, Jenkinson S, Pistorello M, et al. Molecular genetic studies of sporadic pituitary tumors. J Clin Endocrinol Metab, 1994,78(2):387-392.

[11] Daniely M, Aviram A, Adams EF, et al. Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab, 1998,83(5):1801-1805.

[12] Lloyd RV, Jin L, Qian X, et al. Aberrant p27kip1 expression in endocrine and other tumors. Am J Pathol, 1997,150(2):401-407.

[13] Seemann N, Kuhn D, Wrocklage C, et al. CDKN2A/p16 inactivation is related to pituitary adenoma type and size. J Pathol, 2001,193(4):491-497.

[14] Asa SL, Ezzat S. Molecular basis of pituitary development and cytogenesis. Front Horm Res, 2004,32:1-19.

[15] Pei L, Melmed S, Scheithauer B, et al. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res, 1995,55(8):1613-1616.

[16] Adams EF, Lei T, Buchfelder M, et al. Biochemical characteristics of human pituitary somatotropinomas with and without gsp mutations: in vitro cell culture studies. J Clin Endocrinol Metab, 1995,80(7):2077-2081.

[17] Atkin SL, Landolt AM, Jeffreys RV, et al. Differential effects of insulin-like growth factor 1 on the hormonal product and proliferation of glycoprotein-secreting human pituitary adenomas. J Clin Endocrinol Metab, 1993,77(4):1059-1066.

[18] Nakamura S, Ohtsuru A, Takamura N, et al. Prop-1 gene expression in human pituitary tumors. J Clin Endocrinol Metab, 1999,84(7):2581-2584.

[19] Castrillo JL, Theill LE, Karin M. Function of the homeodomain protein GHF1 in pituitary cell proliferation. Science, 1991,253(5016):197-199.

[20] Voss JW, Rosenfeld MG. Anterior pituitary development: short tales from dwarf mice. Cell, 1992,70(4):527-530.

[21] McDermott MT, Haugen BR, Gordon DF, et al. Reverse transcription polymerase chain reaction analysis of pituitary hormone, Pit-1 and steroidogenic factor-1 messenger RNA expression in pituitary tumors. Pituitary, 1999,2(3):217-224.

[22] Tatsumi K, Miyai K, Notomi T, et al. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat Genet, 1992, 1(1):56-58.

[23] Struthers RS, Vale WW, Arias C, et al. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature, 1991,350(6319):622-624.

[24] 孙敬武.垂体腺瘤的分子病理学研究进展.国外医学.病理科学与临床分册,2001,21(1):15-17. [25] 王 清,惠国桢,蔺玉昌,等.垂体瘤遗传变异的初步研究.癌症,2002,21(10):1120-1123.

[26] 俞文华.垂体腺瘤微卫星与抑癌基因LOH研究进展.国外医学·神经病学神经外科学分册,2002, 29(2):156-159.

[27] Farrell WE, Clayton RN. Molecular genetics of pituitary tumours. Trends Endocrinol Metab, 1998,9(1):20-26.

[28] Hui AB, Pang JC, Ko CW, et al. Detection of chromosomal imbalances in growth hormone-secreting pituitary tumors by comparative genomic hybridization. Hum Pathol, 1999,30(9):1019-1023.

[29] Harada K, Nishizaki T, Ozaki S, et al. Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Genet Cytogenet, 1999,112(1): 38-41.

[30] Metzger AK, Mohapatra G, Minn YA, et al. Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg, 1999,90(2):306-314.

[31] Trautmann K, Thakker RV, Ellison DW, et al. Chromosomal aberrations in sporadic pituitary tumors. Int J Cancer, 2001,91(6):809-814.

[32] Szymas J, Schluens K, Liebert W, et al. Genomic instability in pituitary adenomas. Pituitary, 2002,5(4):211-219.

[33] Rickert CH, Dockhorn-Dworniczak B, Busch G, et al. Increased chromosomal imbalances in recurrent pituitary adenomas. Acta Neuropathol, 2001,102(6):615-620.

[34] Pack SD, Qin LX, Pak E, et al. Common genetic changes in hereditary and sporadic pituitary adenomas detected by comparative genomic hybridization. Genes Chromosomes Cancer, 2005,43(1):72-82.

[35] Rickert CH, Scheithauer BW, Paulus W. Chromosomal aberrations in pituitary carcinoma metastases. Acta Neuropathol, 2001,102(2):117-120.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈