首页 理论教育 乒乓球蹦蹦蹦

乒乓球蹦蹦蹦

时间:2022-02-13 理论教育 版权反馈
【摘要】:“浮力”,反作用于物体质量的水的向上的力,取决于物体体积的大小,浮力的大小与被物体排出的水的质量相等。阿基米德,伟大的古希腊哲学家、数学家、物理学家,静态力学和流体静力学的奠基人,享有“力学之父”的美称。阿基米德出生在古希腊西西里岛东南端的叙拉古城。阿基米德的父亲是天文学家和数学家,所以阿基米德从小受家庭影响,十分喜爱数学。经一大臣建议,国王请来阿基米德检验。

乒乓球蹦蹦蹦

乒乓球会始终浮在水面上,你把它们按下去,它们又会浮起来,你得怎样做才能使它们沉在水底呢?

在古希腊,国王有一顶非常漂亮的用黄金制成的皇冠,但是他怀疑工匠制造皇冠时,没有用纯金,而是在金子中混入了一些银子。国王令人找来了阿基米德。阿基米德是非常博学的人,他是哲学家、数学家、物理学家和发明家。阿基米德知道银子没有金子重,因此,由两种金属制成的皇冠要比用相同质量的金子制成的皇冠体积大。但是怎么才能知道新造的皇冠的体积是否是对的呢?在这个故事中,一天当阿基米德在洗澡时,仍然想着这个问题,他偶然发现当他踏入装满水的浴盆时,一些水溢了出去。阿基米德的身体占据了一些空间,并排出(挤走)一些水,阿基米德意识到排出水的体积一定与他身体的体积相等。“我找到答案了”,他喊到,阿基米德找到一块金属和一块银条。每块金属的质量与皇冠的质量完全相等,用水来做实验时,他发现皇冠比银条排出的水少,但比金条排出的水多,因此证明皇冠不是用纯金制成的。

材料:乒乓球;水杯;水;胶带;一角银币。高尔夫球——任选;特大的球。

步骤:

1.把一个玻璃杯倒人2/3的水,用一条胶带标出水的位置。

2.把一个乒乓球放到玻璃杯里,乒乓球会浮在上面。把乒乓球向下按,你会有什么感觉?

3.先把乒乓球大约1/4的部分按人到水中,再把球的一半按到水中,最后把球几乎全部按入水中,观察每次水位会发生什么变化?

4.把乒乓球按入水中,然后把手松开,你能让乒乓球蹦多高y

5.在乒乓球上粘一枚一角硬币,球会下沉吗?你往球上粘多少枚硬币,乒乓球才会下沉?

6.当乒乓球沉入水底时,观察一下玻璃杯内的水位,为什么现在水位比以前高了呢?

7.扩展活动:用高尔夫球和大球进行实验,把实验的结果和乒乓球的实验结果比较一下。

话题:力 测量

两个物体不能同时占据相同的空间,如果你把一个物体丢人一个装有部分水的玻璃杯里,这个物体会排出(挤到一边)一些水,因而使水位上升。被排出的水的体积与物体浸入水面的体积相等,如果物体排出的水的质量与物体本身的质量相等,那么物体会浮在水中,如果物体的质量大于它所排出的水的质量,物体就会下沉,乒乓球浮在下面是因为它所排出的水的质量与球的质量完全相等。

“浮力”,反作用于物体质量的水的向上的力,取决于物体体积的大小,浮力的大小与被物体排出的水的质量相等。物体的体积越大,排出的水就越多,因此浮力也就越大,一克铅会沉入水中,而一克木头却会浮在水面上,这是因为一克木头的体积要大得多。要想把一个乒乓球沉到水杯里,你无法改变它的体积,但你可以增加它的质量,如果你把乒乓球按到了水下,向上的浮力会增加许多,此时要比乒乓球浮在水面上时排出的水多,当你松开乒乓球时,浮力会使球向上弹起。

名人堂

阿基米德

img13

阿基米德,伟大的古希腊哲学家、数学家、物理学家,静态力学和流体静力学的奠基人,享有“力学之父”的美称。据说,他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。

阿基米德出生在古希腊西西里岛东南端的叙拉古城。在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城,但是另一方面,意大利半岛上新兴的罗马共和国,也正不断的扩张势力,北非也有新的国家迦太基兴起。阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角斗场所。

阿基米德的父亲是天文学家和数学家,所以阿基米德从小受家庭影响,十分喜爱数学。大概在他九岁时,父亲送他到埃及的亚历山大城念书。亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里德,在此奠定了他日后从事科学研究的基础。

关于浮力原理的发现,有这样一个故事:相传叙拉古赫农王让工匠替他做了一顶纯金的王冠。但是在做好后,国王疑心工匠做的金冠并非全金,但这顶金冠确与当初交给金匠的纯金一样重。工匠到底有没有私吞黄金呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。经一大臣建议,国王请来阿基米德检验。最初,阿基米德也是冥思苦想而却无计可施。一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻托起。他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡!尤里卡!”。(Eureka,希腊语,意思是“我知道了”。)。

他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属。

这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于他所排出液体的重量。一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等。

阿基米德对于机械的研究源自于他在亚历山大城求学时期。有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”,埃及一直到二千年后的现在,还有人使用这种器械。这个工具成了后来螺旋推进器的先祖。当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理”和“力矩”的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的。他自己曾说:“给我一个支点和一根足够长的杠杆,我就能撬动整个地球。”

刚好海维隆王又遇到了一个棘手的问题:国王替埃及托勒密王造了一艘船,因为太大太重,船无法放进海里,国王就对阿基米德说:“你连地球都举得起来,把一艘船放进海里应该没问题吧?”于是阿基米德立刻巧妙地组合各种机械,造出一架机具,在一切准备妥当后,将牵引机具的绳子交给国王,国王轻轻一拉,大船果然移动下水,国王不得不为阿基米德的天才所折服。从这个历史记载的故事里我们可以明显的知道,阿基米德极可能是当时全世界对于机械的原理与运用,了解最透彻的人。对于阿基米德来说,机械和物理的研究发明还只是次要的,他比较有兴趣而且投注更多时间的是纯理论上的研究,尤其是在数学和天文方面。在数学方面,他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。他更研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是为纪念他而命名。另外他在《恒河沙数》一书中,他创造了一套记大数的方法,简化了记数的方式。

阿基米德在他的著作《论杠杆》(可惜失传)中详细地论述了杠杆的原理。有一次叙拉古国王对杠杆的威力表示怀疑,他要求阿基米德移动载满重物和乘客的一艘新三桅船。阿基米德叫工匠在船的前后左右安装了一套设计精巧的滑车和杠杆。阿基米德叫100多人在大船前面,抓住一根绳子,他让国王牵动一根绳子,大船居然慢慢地滑到海中。群众欢呼雀跃,国王也高兴异常,当众宣布:“从现在起,我要求大家,无论阿基米德说什么,都要相信他!”阿基米德还曾利用抛物镜面的聚光作用,把集中的阳光照射到入侵叙拉古的罗马船上,让它们自己燃烧起来。罗马的许多船只都被烧毁了,但罗马人却找不到失火的原因。900多年后,有位科学家按史书介绍的阿基米德的方法制造了一面凹面镜,成功地点着了距离镜子45米远的木头,而且烧化了距离镜子42米远的铝。所以,许多科技史家通常都把阿基米德看成是人类利用太阳能的始祖。他曾运用水力制作一座天象仪,球面上有日、月、星辰、五大行星,根据记载,这个天象仪不但运行精确,连何时会发生月蚀、日蚀都能加以预测。晚年的阿基米德开始怀疑地球中心学说,并猜想地球有可能绕太阳转动,这个观念一直到哥白尼时代才被人们提出来讨论。公元3世纪末正是罗马帝国与北非迦太基帝国,为了争夺西西里岛的霸权而开战的时期。身处西西里岛的叙拉古一直都是投靠罗马,但是西元前216年迦太基大败罗马军队,叙拉古的新国王(海维隆二世的孙子继任),立即见风转舵与迦太基结盟,罗马帝国于是派马塞拉斯将军领军从海路和陆路同时进攻叙拉古,阿基米德眼见国土危急,护国的责任感促使他奋起抗敌,于是他绞尽脑汁,日以继夜的发明御敌武器。

根据一些年代较晚的记载,当时他造了巨大的起重机,可以将敌人的战舰吊到半空中,然后重重摔下使战舰在水面上粉碎;同时阿基米德也召集城中百姓手持镜子排成扇形,将阳光聚焦到罗马军舰上,烧毁敌人船只(不过,电视节目流言终结者曾经针对这个传说做过实验,结果认为这实际上几乎不可能成功);他还利用杠杆原理制造出一批投石机,凡是靠近城墙的敌人,都难逃他的飞石或标枪。这些武器弄的罗马军队惊慌失措、人人害怕,连大将军马塞拉斯都苦笑的承认:“这是一场罗马舰队与阿基米德一人的战争”、“阿基米德是神话中的百手巨人”。

阿基米德流传于世的数学著作有10余种,多为希腊文手稿。他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积,其体例深受欧几里德《几何原本》的影响,先是设立若干定义和假设,再依次证明。

作为数学家,他写出了《论球和圆柱》、《圆的度量》、《抛物线求积》、《论螺线》、《论锥体和球体》、《沙的计算》数学著作。作为力学家,他著有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作。

其中《论球与圆柱》,这是他的得意杰作,包括许多重大的成就。他从几个定义和公理出发,推出关于球与圆柱面积体积等50多个命题。《平面图形的平衡或其重心》,从几个基本假设出发,用严格的几何方法论证力学的原理,求出若干平面图形的重心。《数沙者》,设计一种可以表示任何大数目的方法,纠正有的人认为沙子是不可数的,即使可数也无法用算术符号表示的错误看法。《论浮体》,讨论物体的浮力,研究了旋转抛物体在流体中的稳定性。阿基米德还提出过一个“群牛问题”,含有8个未知数。最后归结为一个二次不定方程。其解的数字大得惊人,共有20多万位!

《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

《圆的度量》,利用圆的外切与内接96边形,求得圆周率img14为:22/7>img15>223/71,这是数学史上最早的,明确指出误差限度的img16值。他还证明了圆面积等于以圆周长为底、半径为高的等腰三角形的面积;使用的是穷竭法。

《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的2/ 3。在这部著作中,他还提出了著名的“阿基米德公理”。

《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:“任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的3/4。”他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。

《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。

《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。

除此以外,还有一篇非常重要的著作,是一封给埃拉托斯特尼的信,内容是探讨解决力学问题的方法。这是1906年丹麦语言学家J.L.海贝格在土耳其伊斯坦布尔发现的一卷羊皮纸手稿,原先写有希腊文,后来被擦去,重新写上宗教的文字。幸好原先的字迹没有擦干净,经过仔细辨认,证实是阿基米德的著作。其中有在别处看到的内容,也包括过去一直认为是遗失了的内容。后来以《阿基米德方法》为名刊行于世。它主要讲根据力学原理去发现问题的方法。他把一块面积或体积看成是有重量的东西,分成许多非常小的长条或薄片,然后用已知面积或体积去平衡这些“元素”,找到了重心和支点,所求的面积或体积就可以用杠杆定律计算出来。他把这种方法看做是严格证明前的一种试探性工作,得到结果以后,还要用归谬法去证明它。

阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他进一步发展了欧多克斯发明的“穷竭法”,就是用内接和外切的直边图形不断地逼近曲边形以用来解决曲面面积问题,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。

阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。他非常重视试验,亲自动手制作各种仪器和机械。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的抛石机等器械。被称作“阿基米德螺旋永动机”的扬水机至今仍在埃及等地使用。

阿基米德发展了天文学测量用的十字测角器,并制成了一架测算太阳对向地球角度的仪器。他最著名的发现是浮力和相对密度原理,即物体在液体中减轻的视重,等于排去液体的重量,后来以阿基米德原理著称于世。在几何学上,他创立了一种求圆周率的方法,即圆周的周长和其直径的关系。阿基米德是第一位讲科学的工程师,在他的研究中,使用欧几里德的方法,先假设,再以严谨的逻辑推论得到结果,他不断地寻求一般性的原则而用于特殊的工程上。他的作品始终融合数学和物理,因此阿基米德成为物理学之父。

他应用杠杆原理于战争,保卫西拉斯鸠的事迹是家喻户晓的。而他也以同一原理导出部分球体的体积、回转体的体积(椭球、回转抛物面、回转双曲面),此外,他也讨论阿基米德螺线(例如:苍蝇由等速旋转的唱盘中心向外走去所留下的轨迹),圆、球体、圆柱的相关原理,其成就。阿基米德将欧几里德提出的趋近观念作了有效的运用,他提出圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的周长便一个由上,一个由下的趋近于圆周长。他先用六边形,以后逐次加倍边数,到了九十六边形,求出其估计值介于3.14163和3.14286之间。另外,他算出球的表面积是其内接最大圆面积的4倍,而他又导出圆柱内切球体的体积是圆柱体积的2/3,这个定理就刻在他的墓碑上。阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图鲜艳的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”。阿基米德是数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的“阿基米德原理”,他在数学上也有着极为光辉灿烂的成就,ぬ乇鹗窃诩负窝Х矫?他的数学思想中蕴涵着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。正因为他的杰出贡献,美国的E·T·贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。

除了伟大的牛顿和伟大的爱因斯坦,再没有一个人象阿基米德那样为人类的进步做出过这样大的贡献。即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感。他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。后人常把他和牛顿、高斯并列为有史以来三个贡献最大的数学家。阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演绎方法推出许多杠杆命题,给出严格的证明。其中就有著名的“阿基米德原理”,他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其他一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

正因为他的杰出贡献,美国的E·T·贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过,以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈