首页 百科知识 熵,状态的数目

熵,状态的数目

时间:2022-01-31 百科知识 版权反馈
【摘要】:为了更具体地说明熵的概念到底是什么,也为了更好地描述第二定律究竟讲了什么,我们来考虑一个比碎鸡蛋更简单的例子。用熵来说,原先的红蓝颜色分离的状态有着较低的熵,而最终的紫墨水的熵要大得多。我们将把“熵”看作那些概率的某种度量,或者生成同样“整体表现”的那些不同组合方式的数目。于是,如果我们定义任意系统的状态的熵正比于生成那个状态的不同方式数的对数,就能确保独立的系统都满足可加性。
熵,状态的数目_第一推动丛书宇

那么,物理学家在第二定律里所说的“熵”,究竟要怎么量化“随机性”,我们才不会看到一只打碎的鸡蛋自己复合,从而排除这种严峻的可能呢?为了更具体地说明熵的概念到底是什么,也为了更好地描述第二定律究竟讲了什么,我们来考虑一个比碎鸡蛋更简单的例子。假如我们在瓶子里倒几滴红墨水,然后倒几滴蓝墨水,好好搅拌,过一会儿,红蓝墨水将失去本色,最终完全融合,瓶子里看到的就是紫色的墨水了。在这以后,不管怎么搅拌,紫墨水都不会分离成原来的红蓝墨水,尽管搅拌背后的微观物理过程是时间可逆的。实际上,即使不去搅拌,紫色最终也会自发形成,如果我们给墨水加点儿热,就更容易了。不过在搅拌下,紫色状态可以更快达到。用熵来说,原先的红蓝颜色分离的状态有着较低的熵,而最终的紫墨水的熵要大得多。实际上,整个搅拌过程不仅为我们呈现了一个满足第二定律的情景,它还开始让我们明白第二定律到底在说什么。

让我们更准确地来看看熵的概念,从而更明白发生了什么。一个系统的熵到底是什么呢?大略说来,熵是相当基本的概念,尽管它牵扯些微妙的见识——主要来自奥地利物理学家玻尔兹曼(Ludwig Boltzmann),它只不过是计数不同的可能性。为简化问题,我们把墨水的例子理想化,考虑每个墨水分子的位置只有有限个(尽管数量很大)可能。我们将分子看作蓝色或红色的小球,它们只能占据离散的位置,聚集在N3个小格子里。墨水瓶就是那些小格子组成的一个巨大的N×N×N立方体箱子(图1.2)。在图中,我假定每个格子恰好有着一个蓝球或红球。

图1.2 N×N×N立方体箱子,每个格子包含一个蓝球或红球。

为确定瓶中某个位置的墨水颜色,我们对那个位置附近的红球与蓝球的相对密度做某种平均。我们用一个立方体盒子将那位置围起来,盒子比整个箱子小得多,但比刚才说的小格子大得多。假定这个盒子包含大量刚才考虑的小格子,构成整个箱子的一种立方填充,不过不如原先格子填充那么密实(图1.3)。假定每个盒子的边长是原来格子的n倍,则每个盒子有n×n×n个格子。这儿的n虽然很大,但远远小于N。

为计算简洁,我假定N恰好是n的倍数,即

N=kn

这儿k是整数,是箱子的每个边排列的盒子数。于是,箱子里共有k×k×k=k3个内嵌的盒子。

我们的想法是用这些中间盒子来度量盒子里某个位置的“颜色”。在这样的盒子里,我们可以认为每个球都太小而不可能单个地看到。结果是一种平均的颜色,通过对盒子里的蓝球和红球的颜色的“平均”,可以为每个盒子赋予一定的色调。假如盒子里红球的数目为r,蓝球的数目为b(于是r+b=n3),那个位置的色调可以定义为r与b之比。因此,如果r/b大于1,我们就认为它更红,如果r/b小于1,我们就说它更蓝。

图1.3 大小为n×n×n的格子组合成k3个盒子。

我们假定,如果n×n×n个格子的每一个的比值r/b都在0.999和1.001之间(即r和b在千分之一的精度上是相同的),则混合颜色就显现为均匀的紫色。乍看起来这也许是相当严格的要求(它得满足每个n×n×n格子)。但我们发现,在数目变得很大时,多数的球填充方式也的确满足这个条件!我们还应该记住,考虑墨水瓶里的分子时,它们的数量在常规看来会大得惊人。例如,一瓶普通的墨水大约有1024个分子,所以,取N=108没有任何问题。另外我们看到,数码相片在10-2厘米的像素上能完美表现色彩,所以在这个模型里,取k=103也是蛮有道理的。根据这些数字(N=108,k=103,从而n=105),我们发现1/2N3个蓝球和1/2N3个红球的集合,有1023 570000 000000 000000 000000种不同组合方式显现均匀的紫色。而生成原先的蓝球全在顶部而红球全在底部的组合,只有1046 500000 000000种不同方式。于是,对完全随机分布的球来说,几乎可以肯定会出现均匀的紫色,而所有蓝球都在上面的概率只是10-23 570000 000000 000000 000000(即使我们不是要求“所有”而只是99.9%的蓝球在上面,这个概率也不会有大的改变)。

我们将把“熵”看作那些概率的某种度量,或者生成同样“整体表现”的那些不同组合方式的数目。具体说来,直接用数目将得到一个极难驾驭的度量,因为它们的大小太悬殊了。不过幸运的是,我们有很好的理论上的根据,可以取那些数字的自然对数来作为更恰当的“熵”度量。对不大熟悉对数(特别是“自然”对数)的读者,我们用以10为底的对数来表示——记做“lg”(而自然对数为“ln”)。为理解lg,我们需要记住

lg 1=0,lg 10=1,lg 100=2,lg 1000=3,lg 10 000=4,等等。就是说,对10的幂次的对数,我们只要数它有多少个0。对不是10的幂次的正整数的对数,我们可以推广这个法则,其整数部分(即小数点前的数字)等于原来的位数减1,例如(整数部分为黑体字)

lg 2=0.3……

lg 53=1.7……

lg 9140=3.9……

等等。在每个情形下,黑体字都比原数的位数少1。对数(lg或ln)最重要的性质是将乘法转化为加法;即

lg(ab)=lg a+lg b

(在a和b都是10的幂次的情形,这是显而易见的,因为a=10A乘以b=10B得到ab=10A+B。)

上面列出的关系,对我们在熵概念中运用对数有着巨大意义。如果一个系统由两个分离而且完全独立单元组成,那么系统的熵就简单地等于将各部分的熵加起来。在这个意义上,我们说熵是可加的。具体说,假如第一个单元能以P种不同方式产生,第二个单元为Q种,则由两个单元组成的整个系统将以PQ种不同的方式生成(因为对第一个单元的P种生成方式的每一种,第二个单元都有Q种生产方式)。于是,如果我们定义任意系统的状态的熵正比于生成那个状态的不同方式数的对数,就能确保独立的系统都满足可加性。

然而,“生成系统状态的方式数”是什么意思,我还没说清楚。首先,我们模拟(墨水瓶里)分子的位置时,通常不考虑现实的分子会占有离散的格子,因为在牛顿理论中,每个分子都有无限而不是有限个不同可能的位置。另外,每个分子都可能有不那么对称的形状,因而在空间有不同的定向方式;它还可能有其他的内在自由度(如变形),这些都应该考虑进来。每个定向或变形都应该算作系统的不同构形。我们将通过系统的构形空间(下面接着讲)来处理这些问题。

具有d个自由度的系统,构形空间将是一个d维空间。举例来说,如果系统由q个点粒子p1,p2,……,pq组成(每个粒子都没有任何内在自由度),那么构形空间有3q维。这是因为,每个粒子只需要3个坐标来决定它的位置,所以共有3q个坐标,从而构形空间的一个点P确定了所有p1,p2,……,pq的位置(见图1.4)。在更复杂的具有内在自由度的情形,每个粒子将有更多的自由度,但一般思想还是一样的。当然,我并不指望读者能“构想”在那么高维的空间里发生的事情。这是不必要的。我们只需要想象2维空间(如画在纸上的一个区域)或通常3维空间里发生的事情,就能得到足够的认识。不过要牢记,那种图像难免存在一定的局限,我们马上就会遇到一些。当然,我们还应该记住,那样的空间是抽象的纯数学空间,不能与我们经历的3维物理空间或4维物理时空混为一谈。

图1.4 q个点粒子p1,p2,……,pq的构形空间是一个3q维空间。

我们定义熵时,还有一点需要说明,那也是我们正要考虑的问题。在我们的有限模型里,蓝球与红球的组合数目是有限的。可是现在,我们有无限多的组合方式(因为粒子的位置需要连续参数),这就需要我们考虑构形空间里的高维体积,才能得到关于大小的恰当度量,而不是细数一个个的事物。

为理解高维空间的“体积”,我们先来看低维情形。对2维曲面的一个区域来说,“体积度量”其实就是那个区域的曲面面积。在1维空间的情形,我们只考虑沿着曲线的某个部分的长度。在n维构形空间,我们要用普通3维区域的体积的某种n维类比来思考。

图1.5 的粗粒化。

当然,“宏观”观测的意思还是很模糊的,不过我们这儿是在寻求某种“色调”的类比,就像我们在简化的墨水瓶的有限模型里用过的一样。我们承认,这个“粗粒化”的思想确实有某些模糊的地方,但在熵的定义中,我们关心的是构形空间里的那个区域的体积——或那个粗粒化区域的体积的对数。是的,这还是有点儿模糊,然而,不同寻常的是熵的概念表现得那么强健,主要就因为粗粒化的区域具有无比巨大的体积比。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈