首页 理论教育 对声音高保真放大

对声音高保真放大

时间:2022-06-01 理论教育 版权反馈
【摘要】:感受声波的感受细胞是坐落在耳蜗基底膜上的毛细胞。这样,即使是我们内耳的毛细胞感受声波的敏感性再高,若想使人听清声音也是非常困难的。当毛细胞的毛发生弯曲时会引起毛细胞膜的电阻发生改变,使毛细胞产生电活动。毛细胞的兴奋强度增大,经听神经传入大脑皮质听觉中枢的神经冲动就越多,所以也就使人感到声音比较大。

对声音高保真放大

感受声波的感受细胞是坐落在耳蜗基底膜上的毛细胞。外界的声波振动信号要传到毛细胞上,必须经过九曲弯转。其传入的路线是:外耳道—鼓膜—听骨链—卵圆窗—内耳淋巴液—毛细胞。

声波的刺激比较特殊。一个发声的声源发起振动,若振动比较稀疏的空气是较容易的;若让使空气振动的能量使固体物质振动起来,就困难多了。因为空气振动的能量到达固体物质以后,绝大部分能量都要被固体物质反射回来,真正能够穿入固体内部的能量只有千分之一。这样,外界空气振动的声音强度尽管很大,经过耳结构的巨大反射作用,再经过声波传入内耳九曲弯转的摩擦消耗,真正到达内耳毛细胞的声波刺激能量就几乎没有多少了。这样,即使是我们内耳的毛细胞感受声波的敏感性再高,若想使人听清声音也是非常困难的。

令人惊喜的是,人耳这部脑监听器的结构设计得实在是太精巧了。它以极大的可能性,尽可能地增加声波传入内耳的能量,减少声波在传入内耳时的必然消耗。这样才使得我们的耳对声音刺激的感受达到高度惊人的灵敏程度。

首先,耳廓的外形呈一个喇叭形状,向内收敛的喇叭口通向外耳道,使耳廓大面积接收来的声音最后集中输送进入外耳道。所以,耳廓具有集音的作用。

人的外耳道稍微弯曲,长约27厘米,其尽头是鼓膜。从物理学角度上说,一个一端封闭的管道,可以对比它长4倍的声波起到最好的共振作用,即对这个波长的声音起到最大的放大作用。这就是说,我们的外耳道对于波长10厘米左右(即频率为3000赫左右)的声波特殊关爱,使音强最大程度地放大。要知道,3000赫左右的音频也正是我们人类说话、唱歌最多使用的音频范围。所以人耳的构造首先最适合与人之间进行语言、歌唱等思想交流。

鼓膜是一个面积50~90毫米2、厚度仅为01毫米的漏斗形薄膜。它的最大特点是极容易发生振动,而不发生任何的余振。空气振动,它立即随之振动,空气振动停止,它也立即停止振动。如实振动、高度保真,是向内耳真实传递声音的可靠前提。

img33

耳的结构

中耳负责传音的主要是由三块听小骨巧妙联系形成的听骨链。总体可使声音强度增加22倍。巨大的放大作用有效地抵消了耳对声波能量的反射,对于提高耳对声音的感受灵敏度是非常重要的。

内耳是一条骨性的管道,内部还套着一条叫蜗管的膜性管道。骨性管道内充满着外淋巴液,膜性管道内充满着内淋巴液。这条套管形如一个小蜗牛壳,因此被称做耳蜗。感受声波振动刺激的毛细胞就坐落在膜性管道的基底膜上,浸浴在耳蜗的内淋巴液中,其底部与听神经纤维形成联系,其上方的毛与漂浮在内淋巴液中的盖膜相接触。

传到中耳的声波经过听小骨的镫骨可以振动卵圆窗,从而使卵圆窗内侧的外淋巴液发生振动。内耳外淋巴液振动可以使基底膜随之振动,坐落在基底膜上的毛细胞也就随之上下振动。当毛细胞向上振动时,毛细胞的毛就会受到盖膜的顶压发生弯曲。当毛细胞向下振动时,毛细胞的毛则又重新伸直。所以,毛细胞能够如实地随着声波的频率振动,其振动的幅度也与声波的强度成正比。

当毛细胞的毛发生弯曲时会引起毛细胞膜的电阻发生改变,使毛细胞产生电活动。产生的电位再激发听神经纤维产生神经冲动。于是神经冲动就携带着声波振动的信息经过听神经纤维传导到大脑皮质的颞叶听觉中枢,在这里最后产生听觉。

img34

听小骨和声波在耳内的传导

那么,耳蜗基底膜是如何感受频率高低不同的声音的呢?

科学家们发现,传入内耳的声音振动波总是从耳蜗底部引起基底膜像抖动彩带一样振动,并逐渐向顶端推进。越是高频音,在基底膜上产生的最大波幅向上推进的距离就越近,越是低频音产生的最大波幅向上推进的距离就越远。所以,耳蜗底部的基底膜感受的是高频音,顶部感受的是低频音。因此,基底膜的不同部位能够对不同音频的声音做出反应,进行初步的分析。听觉所产生的音调高低就取决于声波在基底膜上产生振幅的部位。那耳蜗又是如何感受声音强度大小的呢?

当某一音调的声音强度增大时,基底膜上产生的振动幅度也就增大,但是产生最大幅度的部位是永远不会改变的。由于振动幅度大了,基底膜上的毛细胞受到的刺激就比较强。毛细胞的兴奋强度增大,经听神经传入大脑皮质听觉中枢的神经冲动就越多,所以也就使人感到声音比较大。由此可见,内耳感受声音的技巧确实是极为高超的。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈