首页 百科知识 《你知道吗

《你知道吗

时间:2022-02-18 百科知识 版权反馈
【摘要】:作者以通俗的语言,深入浅出地解释了现代科学中的一百个尖端课题。其中,有些是了解现代科学技术所必须具备的基础知识,如科学的研究方法、二进制数、相对论、亚原子粒子、核聚变、熵、晶体、病毒等。详细地说就是:1、在进行科学研究时,应当首先认识到问题的存在。此外,细菌没有明显的核,而具有分散在整个细胞内的核物质。所有的病毒都是寄生的。在和列车一起前进的这个孩子看来,小球的速度是每小时20公里。
《你知道吗_—现代科学中的个问题》_影响世界的62部

  作者:艾·阿西莫夫(美)

  成书时间:1979

  推荐版本:科学普及出版社1980年版

  【作者简介】

  见《我们怎样发现了———地球是圆的》。

  【内容提要】

  本书是美国著名科普作家阿西莫夫的优秀作品之一。作者以通俗的语言,深入浅出地解释了现代科学中的一百个尖端课题。其中,有些是了解现代科学技术所必须具备的基础知识,如科学的研究方法、二进制数、相对论、原子粒子、核聚变、熵、晶体、病毒等。有些则是当代科学技术的前沿阵地,如黑洞、统一场论、夸克、金属氢等。作者对这些问题的来龙去脉,它们目前处在什么样的状态,有没有希望得到解决等均作了回答。

  关于什么是科学的研究方法,作者指出,所谓科学的研究方法,很明显就是科学工作者在从事某项科学发现时所采用的方法。但是,这个过于简单的说明对我们没有多大帮助。详细地说就是:1、在进行科学研究时,应当首先认识到问题的存在。例如,在研究物体的运动时,首先应当注意到物体为什么会像它所发生的那样进行运动,亦即物体为什么在某种条件下会运动得越来越快(加速运动),而在另一种条件下则会运行得越来越慢(减速运动)。

  2、要把问题的非本质方面找出来,加以剔除。例如,一个物体的味道对物体的运动是不起任何作用的。

  3、要把你能够找到的、同这个问题有关的全部数据都收集起来。在古代和中世纪,这一点仅仅意味着如实地对自然现象进行敏锐观察。但是进入近代以后,情况就有所不同了,因为人们从那时起已经学会去模仿各种自然现象,也就是说,人们已经能够有意地设计出种种不同的条件来迫使物体按一定的方式运动,以便取得与该问题有关的各种数据。例如,可以有意地让一些球从一些斜面上滚下来;这样做时,既可以用各种大小不同的球,也可以改变球的表面性质或者改变斜面的倾斜度,等等。这种有意设计出来的情况就是实验,而实验对近代科学起的作用是如此之大,以致人们常常把它称为“实验科学”,以区别于古希腊的科学。

  4、有了这些收集起来的数据,就可以作出某种初步的概括,以便尽可能简明地对它们加以说明,亦即用某种简明扼要的语言或者某种数学关系式来加以概括。这也就是假设或假说。

  5、有了假说以后,你就可以对你以前未打算进行的实验的结果作出推测。下一步,你便可以着手进行这些实验,看看你的假说是否成立。6、如果实验获得了预期的结果,那么,你的假说便得到了强有力的事实依据,并可能成为一种理论,甚至成为一条“自然定律”。作者说,以上是一种理想的科学研究方法。但是在真正的实践中,科学工作者并不需要像做一套柔软体操那样一步一步地进行下去,而且他们通常也不这样做。

  作者指出,比起旁的事情来,像直觉、洞察力甚至运气这一类因素常常更起作用。然而这不是说,一切都是凭好运气得来的,有些人之所以会碰上这样的“好运气”,只是因为他们具有十分敏锐的直觉,而这种敏锐的直觉则是依靠他们丰富的经验、深刻的理解力和平时爱动脑筋换来的。作者在解释细菌、微生物、菌株和病毒有什么不同时说,细菌是一种单细胞生物体,生物学家把这种生物归入“裂殖菌类”。细菌细胞的细胞壁非常像普通植物细胞的细胞壁,但没有叶绿素。因此,细菌往往与其他缺乏叶绿素的植物结成团块,并被看作属于“真菌”。细菌因为特别小而区别于其他植物细胞。实际上,细菌也包括存在着的最小的细胞。此外,细菌没有明显的核,而具有分散在整个细胞内的核物质。因此,细菌有时与称为“蓝绿藻”的简单植物细胞结成团块,蓝绿藻也有分散的核物质,但它还有叶绿素。

  作者认为,“微生物”,恰当地说,是指任何一种形式的微观生命。“菌株”一词用得更加普遍,因为它指的是任何一点小的生命,甚至是一个稍大一点的生物的一部分。例如,包含着实际生命组成部分的一个种子的那个部分就是胚芽,因此我们说“小麦胚芽”。此外,卵细胞和精子(载着最终将发育成一个完整生物的极小生命火花)都称为“生殖细胞”。然而,在一般情况下,微生物和菌株都用来作为细菌的同义词;而且确实尤其适用于致病的细菌。“病毒”一词来自拉丁文,其含义是“毒”。这可以追溯到生物学家还不能确切地知道病毒为何物的时候,那时他们只知道某些制剂含有能致病的东西。病毒不同于细菌,也不同于其他一切生物,因为它不是由细胞所组成。它比一个细胞小得多,仅仅有一个大分子那样大。它是由一个周围被一层蛋白包着的核酸圈所构成。就这点来说,它很像细胞的染色体,因此我们几乎可以把病毒看作是“不受拘束的染色体”。病毒不像细菌,它们缺乏独立生活的能力。它们仅仅能够在细胞内繁殖。所有的病毒都是寄生的。在某些情况下,它们造成的损害也许不明显;但在另一些情况下,则会造成严重的疾病。

  作者还简单扼要地解释了爱因斯坦的相对论。

  牛顿在17世纪80年代首次总结出了物体的运动定律。根据这些定律,不同的运动可以按照简单的算术法则相加起来。假设有一列火车以每小时20公里的速度从你身边驶过,而车上又有个孩子以每小时20公里的速度向列车行进方向抛掷一只小球。在和列车一起前进的这个孩子看来,小球的速度是每小时20公里。而在你看来,火车的运动要和小球的运动加在一起,结果,小球就以每小时40公里的速度运动了。所以,不能单单就小球来确定它的速度。速度是相对于某个特定观察者而言的。任何一种试图解释速度(及有关的其它现象)在不同观察者看来的变化情况的运动理论,都是一种“相对论”。

  爱因斯坦的与众不同的相对论源于这样一件事实:在火车上扔小球的这种做法,似乎对于光就不再适用了。光是能够顺着或逆着地球的运动方向运动的。在前一种情况下,它似乎会传播得比后一种情况下快。这正像飞机在顺风飞行时相对于地面的速度要比逆风飞行时高一些一样。然而,对光速所进行的最精密的测量表明,无论发光的光源如何运动,光速永远是不变的。因此,爱因斯坦宣称:假设光在真空里的速度已经测得,那么,它将永远保持这个速度不变(每秒30万公里),在任何情况下都是如此。对于这一设想,宇宙间的各种定律相应地又该怎样安排呢?爱因斯坦发现,为了保证光速是一个恒量,人们必须接受许许多多出乎意料的事情。他发现,随着物体运动速度的增加,物体在运动方向上会变得越来越短,直到在达到光速时,长度变到零为止;与此同时,物体的质量会变得越来越大,在达到光速时,质量会变为无穷大。他还发现,当物体的运动速度越来越小时,在运动物体上时间流逝的速度也会不断减小,而在达到光速时,时间就会完全停止。他又发现,质量等价于一定的能量,能量也等价于一定的质量,等等。他把上述对匀速运动物体的所有规律归纳起来,并于1905年以“狭义相对论”的名称予以发表。1915年,他又在讨论变速运动物体的规律方面得出了更为深奥的结果,同时还对引力作用进行了一番新的表述。这些成果被称为“广义相对论”。对此,作者认为,只有当物体有很大的运动速度时,爱因斯坦所预言的某些变化才能被人们所察觉。亚原子粒子就有这样的速度。人们对亚原子粒子进行观测,发现爱因斯坦的预言是正确的,而且还是十分正确的。如果爱因斯坦的相对论是错误的,我们那些轰击原子的装置就无法运转,原子弹也不会爆炸,某些天文观测也无法进行了。

  不过,作者指出,在通常的速度下,爱因斯坦所预言的各种效应都是极小的,因此可以被忽略掉。这时,牛顿定律的简单的算术加法就起作用了。由于在我们所处的环境中,牛顿定律总是适用的,因此,它们被我们看作是一种“常识”。而爱因斯坦的定律却被看成“不可思议的”。作者在解释夸克是什么东西时说,夸克这个概念,是由于最近25年来发现了7百多种不同的亚原子粒子才产生出来的。确实,其中只有很少几种粒子能够维持到十亿分之一秒才发生衰变,但是,仅仅存在着这些粒子的事实本身,就够物理学家伤脑筋了。为什么会有这么许多粒子,而且每一种粒子都与别种粒子不相同呢?作者猜测,事情会不会是这样:这些不同的粒子可能组成几个大家族,并且每个家族内的许多粒子可能按照非常有规律的方式彼此有些差异?要是这样的话,就只需要考虑到少数几个粒子家族的存在,而无需把每一种粒子一一分别考虑了。这时,在看来似乎杂乱无章的亚原子丛林里,就会建之起某种秩序来了。

  1961年,美国物理学家盖尔曼和以色列物理学家尼门分别研究出一种把粒子归入这样一些家族的办法。盖尔曼甚至还提出,有一个粒子族应该包括一种他称之为负ω粒子的东西———这是一种具有非常奇特的、极不寻常的性质的粒子,但人们从来没有碰到过它。不过,物理学家只要知道它按照假设应该会有什么样的性质,他们就知道该怎样去寻找它了。结果,他们在1964年发现了这种粒子,并且发现它的性质正好与盖尔曼对它的描绘一模一样。

  盖尔曼在研究他那些粒子家族时想到,说不定所有各种不同的亚原子粒子会是由很少几种更为简单的粒子结合而成的。如果真是这样,那可就会把我们对宇宙的看法大大简化。在他看来,只要假定存在着三种不同的、具有特定性质的亚原子粒子,就可以按不同的方式把它们组合起来,得出已知的所有各种亚原子粒子。

  由于要用三个这种假设的粒子结合起来,才能构成一个已知的粒子,盖尔曼就想起了作家乔伊斯的《芬尼根斯·韦克》中的一句话:“三个夸克才顶得上一个马克。”因此,盖尔曼就把这些假设中的粒子命名为“夸克”。夸克的二个令人惊奇之处,就是它们应该带有非整数电荷。所有已知的电荷不外以下几种情况:或者等于电子的电荷(-1),或者等于质子的电荷(+1),再不然,就是正好等于这两种电荷的若干倍。但是,p夸克的电荷只有+2/3n夸克和λ夸克的电荷只有-1/3。这样,一个质子将由一个n夸克和两个p夸克构成,一个中子则由两个n夸克和一个p夸克构成,余者依此类推。

  自从盖尔曼第一次提出存在夸克粒子以来,物理学家就一直千方百计想找到夸克存在的迹象,但却没有成功。1969年,澳大利亚有人报道说,已经在宇宙线碰撞所产生的粒子簇射中,找到了带非整数电荷的粒子的径迹。不过,它的证据看起来非常玄,所以,大多数物理学家对这个报道都持怀疑态度。(编者注:20002月,欧洲核子中心(CERN)的科学家宣布,他们成功地在实验室中模拟微型的“宇宙大爆炸”,从中获得证据表明,存在一种新的物质形态———“夸克胶子浆”。)作者最后一个问题是:衰老的目的是什么?

  衰老和死亡是不可避免的。像人这样的生物实际上注定要变老和死亡,因为人类的细胞似乎由它们的基因“编制了程序”,逐渐地经受着与时俱进的称为衰老的那些变化。

  那么作者提出疑问:衰老有某种用处吗?衰老有什么益处呢?生命的最惊人的特性,除了单纯的生存之外,就是它的适应性。在陆地上、海洋里和空气里有生物;在温泉里、咸水里、沙漠上、丛林里和两极的荒芜地区里以至各处都有生物。甚至可能设计出我们认为在火星上和木星上存在着的那样一些环境,并有可能发现在那些条件下生存的简单生命形式。

  为了获得这样的适应性,基因结合物和基因性质本身必须发生经常性的变化。

  单细胞生物进行分裂,两个子细胞都有着原细胞所具有的基因。如果基因能够作为完善的复制品通过一次次分裂永远传递下去,那么,原细胞的性质就决不会发生变化,不论它的分裂和再分裂有多么频繁。然而,复制品并不总是那么完善;有时会发生无规的变化(“变异”),而且逐渐由母细胞产生不同的品系、不同的变种,最后形成物种(“进化”)。某些物种在某种环境里比其他物种能生存得更好,因此不同的物种占据着地球上不同的小环境。

  有时,各个单细胞生物之间互相交换染色体。这种原始形式的性行为导致基因结合物的改变,而这又进一步加速进化发展。在多细胞动物方面,两个生物互相合作进行有性繁殖变得越来越重要。除了变异能单独造成变种外,不断产生带有基因———一种一些基因来自父方、一些基因来自母方的无规混合物———的幼体,也能形成变种。结果,进化的速度大大加快了,而新形成的那些物种能更容易地散布到新的小环境,或者使它们本身更好地适应旧的小环境,从而比从前能更有效地利用小环境。因此,作者说,其关键就是产生带有新的基因结合物的幼体。某些新的基因结合物也许很拙劣,但它们的寿命不长。那些非常有用的新的结合物能够“成功”并排除竞争。然而为了办得最成功,带有“未经改进的”基因结合物的较老的一代不应留在这样的环境里。可以肯定,上了年纪的生物总是会随着时间推移而死去,有的是由于事故造成,有的是由于生命消耗殆尽所致,但可以更有效地促进这个过程。作者说,早期几代具有预定要衰老的细胞的那些物种会更有效地促进新陈代谢。幼体就会进化得更快而且更成功。我们能看到我们周围的生物长寿所造成的不利因素。能活数千年的红杉树和刺毛松球几乎灭绝了,长寿的象几乎没有短寿的老鼠那样能适应环境;或者说,长寿龟没有寿命短的蜥蜴那样能适应环境。精彩语录

  1、有的物理学家会致力于在特定条件下进行精确的测量。或许,他打算测定在某些化学反应中所释放出来的热量的精确数量;或许,他打算度量某一种亚原子粒子在分裂成其他粒子、并释放出能量时的精确方式;或许,他打算知道大脑的微弱电势在某些药物作用下的精确变化。在这些工作中,他都可以称得上是位“实验物理学家”,科学并不保证所有的问题都有答案。只有在人们获得了足够的资料之后,科学才能向人们提供一个作出回答的方案。

  2、生命是怎么开始的?对于这个问题,现在还不能直截了当地回答,因为当生命开始时,周围还没有人,也就没有见证人。但我们能够对这个问题进行逻辑分析。

  3、但生命的出现并不是一种奇迹,它只不过是因为各种分子沿着一条阻力最少的线索彼此结合起来而已,这一点似乎是十分肯定的,在原始地球的条件下,必然会形成生命,就像铁在潮湿的空气里必然会生锈那样。在物理性质上和化学成分上与地球相似的任何其他行星,也会不可避免地出现生命———尽管不一定是有智力的生命。

  4、人体内是否有某种周期性化学反应?如果是这样,生物钟应该随温度或随药物而变化,但它却不是这样。那么,它是不是与外界的一些微妙节律发生了连锁关系的某种东西,即使去掉了阳光和温度的变化,这种连锁关系依然存在呢?也许是这样。但如果是这样,那我们也还没有发现这些节律的性质。我们能看到我们周围的生物长寿所造成的不利因素。能活数千年的红杉树和刺毛松球几乎灭绝了,长寿的象几乎没有短寿的老鼠那样能适应环境;或者说,长寿龟没有寿命短的蜥蜴那样能适应环境。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈