首页 理论教育 椎间盘生物化学研究的热点

椎间盘生物化学研究的热点

时间:2022-03-24 理论教育 版权反馈
【摘要】:近年来,国内外的学者对椎间盘的生物化学变化进行了大量深入的研究,对揭示椎间盘退变规律作出了很多贡献。展望未来,椎间盘生物化学研究有望从以下几个方面获得突破性进展。在椎间盘退变过程中,基质成分变化对椎间盘的生理功能产生较大的影响。

近年来,国内外的学者对椎间盘的生物化学变化进行了大量深入的研究,对揭示椎间盘退变规律作出了很多贡献。但是,对椎间盘退变机制的解释尚不圆满,很多问题还有待于解决。目前这种状况还不能适应椎间盘疾病防治工作的需要。展望未来,椎间盘生物化学研究有望从以下几个方面获得突破性进展。

1.椎间盘细胞的生物学特性研究 椎间盘主要由细胞及周围基质构成,通过探讨细胞生长、繁殖、凋亡的规律,有助于深入了解椎间盘基质生化成分的代谢特点,探索椎间盘生物化学的变化规律,有助于寻找预防椎间盘退变的方法,对预防与治疗退变性疾病具有重要意义。

2.胶原与蛋白多糖调控机制的研究 随着对椎间盘基质成分结构、功能以及调节规律认识的逐步深入,用各种手段调节不同退变时期椎间盘内基质成分的种类和水平,利用不同基质成分及合成类抑制因子调节其活性可以从根本上调控椎间盘基质成分的含量与性质变化,改善椎间盘力学性能,从而达到预防或延缓椎间盘退变的目的。胶原和蛋白多糖作为椎间盘组织中的主要大分子物质,在椎间盘中具有极其重要的功能,对其结构和功能的进一步研究,将为椎间盘的退变的预防和椎间盘突出的治疗开拓一种新的途径。如对胶原与蛋白多糖基因的监测、蛋白多糖基因的体内转染等,在椎间盘疾病的预防和治疗方面都具有较高的研究价值和较好的应用前景。

3.椎间盘基质降解机制的研究 近年来,认为在椎间盘退变过程中,基质金属蛋白酶(MMPs)发挥着重要作用,但是到目前为止仅仅在椎间盘中发现几种MMPs,随着现代检测技术的进步,如免疫细胞化学、原位杂交技术、酶谱学等的应用,无疑将使我们能够在椎间盘中发现更多的MMPs,通过建立更接近于体内环境的培养体系,以观察各种因子对MMPs的影响,探讨MMPs的作用和调节机制,采用基因治疗策略,调控椎间盘中MMPs的表达,通过对MMPs降解基质成分及其调控机制研究,可寻找到阻止椎间盘退变的有效方法。在应用基质降解酶进行化学溶核疗法的基础和临床研究时,在观察它们对髓核作用的同时,进一步明确其对软骨终板、纤维环的作用特点,对神经组织的急慢性毒性反应以及硬膜外和椎间盘内注射引起的近、远期并发症等,对这些问题的正确认识和深入探讨将会使化学溶核疗法成为一种治疗椎间盘突出症真正有价值的方法。

4.组织工程和细胞生物学的研究与基因治疗椎间盘退变 近年来,组织工程和细胞生物学的研究取得突破性进展,从椎间盘的生物化学领域,用各种手段调节不同退变时期椎间盘内基质成分的种类和水平,利用基因调节其活性可以从根本上调控椎间盘基质成分的含量与性质变化。在椎间盘退变过程中,基质成分变化对椎间盘的生理功能产生较大的影响。基因治疗的主要方法应该是利用基因转染技术,使体细胞表达对椎间盘退变有抑制和逆转作用的生长因子,预防或延缓椎间盘退变,使椎间盘基质成分的产生变化。基因治疗中存在的缺点和不足,如生物安全性、表达稳定性差等,是基因治疗椎间盘退变需要解决的问题。基因治疗是今后治疗椎间盘退变的重要方向。

(杨华清)

参考文献

1 Bornstein P.Matrixcellular Proteins:an overview.Matrix Biol,2000;19:555

2 Robetts S.collagen types around the cell of zhe intevertebral disc and carticage end piate:An immunolocatization study.Spine,1991;16:1030

3 Takayama H,Takahashi H,Mizumach K,et al.Low density lipoprotein related protein(LRP)is required for lactoferrin-enhanced collagen gel contactile activity of human fibroblasts.J Biol Chem,2003;278:22112

4 Aigner T,Greskotter K,Fairbank JCT,et al.Variation with age in the pattern of typeⅩcollagen expression in normal and scoliotic human intervertebral discs.Calcif Tissue Int,1998;63:263-268

5 Andreas G,Nerlich MD,Erwin D,et al.1997 volvo award winner in basic science studies:immunohistologic markers for age-related changes of human lumbar intervertebral discs.Spine,1997;22:2781-2795

6 Osti OL,Vernon-Roberts B,Fraser RD.Annulus tears and intervertebral disc degeneration:an experimental study using an animal model.Spine.1990,15:762

7 Andreas G,Nerlich E,Erwin D,et al.Immunohistoligic discs.Spine,1997;22(24):2781

8 Urban J,Holm S,Maroudas A,et al.Nutrition of the intervertebral disc.Clin Orthop.1997;129:101

9 Roberts S,Menage J,Duanice V,et al.Collagen types around the cells of intervertebral disc and cartilage end plate:an immunolocalization study.Spine.1991;16:1030

10 Boos N,Nerlich AG,Wiest I,et al.Immunolocalization of typeⅩcollagen in human lumbar intervertebral discs during ageing and degeneration.Histochem Cell Biol,1997;108:471-480

11 Vinceti MP,Clark IM,Brinckerhoff CE.Using inhibitors of metalloproteinases to treat arthri-tis.Arthritis Rheum,1994;37:1115

12 Andreas G,Nerlich MD,Erwin D,et al.1997 volvo award winner in basic science studies:immunohistologic markers for age-related changes of human lumbar intervertebral discs.Spine,1997;22:2781-2795

13 Pearce KH,Grimmer BJ,Adams ME.Degeneration and chemical composition of the human lumbar intervertebral disc.J Orthop Res,1990;5:198

14 Moon SH,Gilbertson LG,Nishida K,et al.Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer:Implications for the clinical management of intervertebral disc disorders.Spine,2000;25:2573

15 Nerlich AG,Schleicher ED,Boos N.1997volvo award winner in basic science studies.Immunohistogic markers for age-related changes of human lumbar intervertebral discs,Spine,1997;22 (24):2781

16 Paassilta P,Lohiniva J,Goring HH,et al.Identification of a novel common genetic risk factor for lumber disk disease.JAMA,2001;285:1843

17 Takegami K,Masuda K,Kumano E,et al.Osteogenic protein-1is most effective in stimulating nucleus pulposus and annulus fibrous cells to repair their matrix after chondroitinase ABC-induced chemonucleosis.Trans Orthop Res Soc,1999;24:201

18 Rufai A,Benjamin M,Ralphs JR.The development of fibrocartilage in the rat intervertebral disc.Anat Embryol(Berl),1995;192(1):53-62

19 Thompson JP,Pearce RH,Schechter MT,et al.Preliminary evaluation of scheme for grading the gross morphology of the human intervertebral disc.Spine,1990;15:411-415

20 Chris K,Vivian L,Liu C,et al.Roles of aggrecan domains in biosynthesis,modification by glycos-mainoglycans and product secretion.Biochem J,2001;354:199-207

21 Roberts S,Eisenstein SM.Proteoglycan components of theintervertebral disc and cartilage endplate:an immunolocalization study of animal and human tissues.Histochem J,1994;26:402-411

22 Buckwalter JA,Rosenberg LC.Age-related changes in cartilageproteoglycans;quantitative electron microscopic studies.Microsc.Res Tech,1994;28:398-408

23 Waters PM,Lipson SJ.Modification of the degenerative response in experimental intervertebral disk herniation in rabbits.J Spinal Disord,1988;1(1):81-85

24 Kaapa E,Holm S,Inkinen R,et al.Proteoglycan chemistry in experimentally injured porcine intervertebral disk.J Spinal Disord,1994;7(4):296-306

25 Sztrolovics R,Alini M,Mort JS,et al.Age-related changes in fibromodulin and lumican in human intervertebral discs.Spine,1999;24(17):1765-1771

26 Ishii T,Tsuji H,Sano A,et al.Histochemical and ultrastructural observations on brown degeneration of human intervertebral disc.J Orthop Res,1991;9(1):78-90

27 Alini M,Carey D,Hirata S,et al.Cellular and matrix changes before and at the time of calcification in the growth plate studied in vitro:arrest of typeⅩcollagen synthesis and net loss of collagen when calcification is initiated.J Bone Miner Res,1994;9:1077-1087

28 Hoyland JA,Thomas JT,Donn R,et al.Distribution of typeⅩcollagen mRNA in normal and osteoarthritis human cartilage.Bone Miner,1991;15:151-164

29 Meakin JR,Hukins DW.Effect of removing the nucleus pulposus on thedeformation of theannulus fibrosus during compression of the interverte-bral dis.J Biomech,2000;33(5):575

30 Meakin JR,Hukins DW.Effect of removing the nucleus pulposus on thedeformation of theannulus fibrosus during compression of the inter-verte-bral dis.J Biomech,2000;33(5):575

31 Ariga K,Yonenobu K,Nakase T,et al.Mechanical stress-inducedapoptosis of endplate chondrocytes in organ-cultured mouseintervertebral discs:an ex vivo study.Spine,2003;28(14):1528-1533

32 Knight JA,Stephens RW,Bushell GR,et al.Neutral proteinase inhibitors from human intervertebral disc and femoral head articular cartilage.Biochem Biophys Acta.1997;584:304

33 Hulboy DL,Rudolph LA,Matrisian LM.Metalloproteinase as mediators of reproductive function.Mol Hum Reprod,1997;3:27-45

34 Gruber HE,Norton JN,Hanley EN,et al.Antiapoptotic effects of IGF-1and PDGF on human intervertebral disc cell in vitro.Spine,2000;17:2135-2157

35 Yasumoto M,Matsuyoshi M,Wakao N,Hisashi I.The involvement of Matrix Metalloproteinases and inflammation in lumbar disc herniation.Spine,1998;25:863-869

36 Antonion J,Goudsouzian NM,Heathfield,et al.The human lumbar endplate:evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth,matration,aging,and degeneration.Spine,1996;21:1153-1161

37 Kang JD,Georgescu HI,Larkin L,Stefanovic-Racic M,Donaldsons WF,Evans CH.Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases,nitric oxide,interleukin-6,and PGE2.Spine,1996;21:271-277

38 Pei D,Weiss SJ.Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1process progelatinaseA and express intrinsic matrix-degrading activity.J Boil Chem,1996;271:9135-9140

39 Pendas AM,Knauper V,Puente XS,et al.Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics,chromosomal location and tissue distribution.J Biol Chem,1997;272:4281-4286

40 Lotz JC,Chin JR.Intervertebral disc cell death in dependent on the magnitude and duration of spinal loading.Spine,2000;12:1477-1483

41 Cawston TE,Billington C.Metalloproteinase in the rheumatic disease.J Pathol,1996;180:115-117

42 Takahashi H,Suguro T,Okazime Y,et al.Inflammatory cytokines in the herniated disc of the lumbar.Spine,1996;21:214-218

43 Kanemoto M,Hukuda S,Komiya Y,et al.Immunohistochemical study of matrix metalloproteinase-3and tissue inhibitor of metalloproteinase-1 in human intervertebral disc.Spine,1996;21:1-8

44 Kang JD,Stefanovic-Racic M,Mclntyre LA,et al.Toward a biochemical understanding of human intervertebral disc degeneration and herniation.Spine.1997,22:1065

45 Denis LJ,Verweij J.Matrix metalloproteinase inhibitors present achievements and future prospects.Invest New Drugs,1997;15:175-185

46 Jovamovic DV,Fernandes JC,Martel-Pelletier J,et al.In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML3000reduce the progression of experimental osteoarthritis suppression of collagenase-1and interleukin-1beta synthesis.Arthritis Rheum,2001;44(10):2320-2330

47 Bulter D,Trafimow JH,Anderson GB,et al.Discs degeneration before facets.Spine,1990;15:111

48 Chen C,Cavanaugh JM,Ozaktay AC,et al.Effects of phospholipase A2on lumbar nerve root structure and function.Spine,1997;22:1057-1064

49 Masuda K,Takegami K,An H,et al.Recombinant osteogenic protein-1upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells.Trans Orthop Res Soc,1999;24:1029

50 Gruber HE,Hanley EN.Analysis of ageing and degeneration of the human intervertebral disc.Spine,1998;24(7):751-757

51 Skaggs DL,Weidenbaum M,Iatridis JC,et al.Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus.Spine,1994;19(12):1310-1319

52 Johannes F,Klaus H,Engene JM,et al.Recombinant human osteogenic protein-1is a potent stimulator of the synthesis of cartiage proteoglycans and collagens by human articular chondrocytes.Arthritis Rheum,1996;39:1896-1904

53 Wehling P,Schulitz KP,Robbins PD,et al.Transfer of gene to chondrocytic cells of the lumbar spine:Proposal for a treatment strategy of spinal disorders by local gene therapy.Spine,1997;22:1092

54 Nishida K,Kang JD,Suh JK,et al.Adenovirusmediated gene transfer to nucleus pulposus cells:Implications for the treatment of intervertebral disc degeneration.Spine,1998;23:2437

55 Bucker RB.Elastin metabllism and chemistry potential role in lung development and structure.Enviro Health Perspec,1990;56:169

56 Ushiki T,Murakumo M.Scanning electron microscopic studies of tissue elastin components exposed by a KOH-collagenase or simple KOH digestion method.Arch Histol Cytol,1991;54:347

57 Johnson EF,Caldwell RW.Elastic fibers in the annulus fibrosus of the dog intervertebral disc.Acta Anat,1990;117:236

58 Tatsuo U,Masashi M.Scanning electron microscopic studies of tissue elastin components exposed by a KOH-Collagenase or simple KOH digestion method.Arch Histol Cytol,1991;54(4):427-436

59 Humzah MD,Soames RW.Human intervertebral disc:Structure and function.Anat Record,1988;220:337-340

60 Johnson E F,Caldwell R W,Berryman H E.,et al.Elastic fibers in the anulus fibrosus of the dog intervertebral disc.Acta Anat,1984;118:238-242

61 Buckwalter MD,Reginald R,Cooper MD.Elastic fibers in humanintervertebral discs.JBJS,1976; 58(A):73-76

62 Lawrence BS,Terril BW,John GL.Quantitation of elastin through measurement of its pentapeptide content.Biochem Biophys Res Communic,1986;136(2):672-678

63 Matsui Y,Maeda M,Nakagami W,et al.The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation.Spine,1998;23:863-869

64 Satoh K,Konno S,Nishiyama K,et al.Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposus.Spine,1999;24:1980-1984

65 Ebara S,Latrines J C,Setton A,et al.Tensile Properties of Nondegenerate Human Lumbar Anulus Fibroses.Spine,1996,21(4):452-461

66 Miyamoto S,Yonenobu K,Ono K.Experimental cervical spondylosis in the mouse.Spine,1991;16:495

67 Nachemson A,Lewin T,Marouds A,et al.:In vitro diffusion of dye through the endplates and the annulus fibrosus of human lumber intervertebral disc.Acta Orthop Scand,1970;41:589

68 Best BA,Guilak F,Setton LA,et al.Compressive mechanical properties of human annius fibrosus and their relationship to biochemical composion.Spine,1994;19:212

69 Reitamo S,Remitz A,Tamai K,et al.Interleukin 10up-regulates elastin gnene expresion in vivo and in vitro at the transcriptional level.J Bio-Chem,1994;302:331-333

70 Xu C,Zarins CK,Glagov S.Gene expression of tropoelastin is enhanced in the aorta proximal to the coarctation in rabbits.Exp mol pathol,2002;72(2):115-123

71 Pierce RA,Albertine KH,Starcher BC,et al.Chronic lung injury in preterm lambs:disordered pulmonary elastin deposition.Am J Physiol,1997;272:L45-60

72 Rich CB,Fontanilla MR,Nugent M.Basic fibroblast growth factor decreases elastin gene transcription through an AP1/cAMPresponse element hybrid site in the distal promoter.J Biol Chem,1999;274:334-339

73 Mcgowan SE,Liu R,Harvey CS.Effects of heparin and other glycosaminoglycans on elastin production by cultured neonatal rat lung fibroblasts.Arch biochem biophys,1993;302:322-331

74 Tokimitsu I,Kato H,Wachi H,et al.Elastin synthesis is inhibited by angiotensinⅡbut not by plateletderived growth factor in arterial smooth muscle cells.Biochim Biophys Axta,1994;1207:68-73

75 Carreras I,Rich CB,Panchenko MP,et al.Basic fibroblast growth factor decreases elastin gene transcription in aortic smooth muscle cells.J Cell Biochem,2002;85(3):592-600

76 Kucich U,Rosenbloom JC,Abrams WR,et al.Transforming growth factor-beta stabilizes elastn mRNA by apathway requiring active smads,protein kinase C-delta,and p38.Am J Respir Cell Mol Biol,2002;26(2):183-188

77 Jensen DE,Rich CB,Terpstra AJ,et al.Transcriptional regulation of the elastin gene by insulin-like growth factor-Ⅰinvolves disruption of Sp1binding.J Biol Chem,1995;270:555-563

78 Lambert CA,Soudant EP,Nusgens BV,et al.Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces.Lab invest,1992;66:444-451

79 Wachi H,Seyama Y,Tajima S.Modulation of elastin expression by heparin is dependent on the growth condition of vascular smooth muscle cells:up-regulation of elastin expression by heparin in the proliferating cells is mediated by the inhibition of protein kinase C activity.J Biochem tokyo,1995;118:582-586

80 Sugitani H,Wachi H,Tajima S,et al.Nitric oxide stimulates elastin expression in chick aortic smooth muscle cells.Biol Pharm bull,2001;24 (5):461-464

81 Weinstein M,Xu X,Ohvama K,et al.FGFR-3 and FGFR-4function cooperatively to direct alveogenesis in the murine lung.Development, 1998;125:3615-3623

82 Sauvage M,Hinglais N,Mandetc C,et al.Localization of elastin mRNA and TGF-betal in rat aorta and caudal artery as a function of age.Cell Tissue Res,1998;291(2):305-314

83 McGowan SE,Jackson SK,Olson PJ,et al.Exogenous and endogenous transforming growth factors beta influence elastin gene expression in cultured lung fibroblasts.Am J Respir Cell Mol Biol,1997;17(1):25-35

84 Wachi H,Seyama Y,Yamashita S,et al.Stimulation of cell proliferation and autoregulation of elastin expression by elastin peptide VPGVG in cultured chick vascular smooth muscle cells.Febs Lett,1995;368:215-219

85 Mcgowan SE,Doro MM,Jackson SK.Endogenous retinoids increase perinatal elastin gene expression in rat lung fibroblasts fetal explants.Am J Physiol,1997;273:L410-416

86 Kolpalov V,Rekhter MD,Gordon D,et al.Effect of mechanical forces on grwth and matrix protein synthesis in the in vitro pulmonary artery.Circ Res,1995;77:823-831

87 Davidson JM,Lu Valle PA,Zoia O,et al.Ascorbate differectially regulates elastin and collagen biosynthesis in vascular smooth muscle cells and skin fibroblasts by pretranslational mechanisms.J Biol Chem,1997;272:345-352

88 Antorniou J,Gondsouzian NM,Heathfield T.F,etal.The Human lumbar End-plate:Eitdence of changes in Biosynthesis and denatruration of the Extracellular Matrix with Growth maturation.Aging,ond degeneration.Spine,1996;21(10):1153-1161

89 Ebara S,Latrines J C,Setton A,et al.Tensile Properties of Nondegenerate Human Lumbar Anulus Fibroses.Spine.1996;21(4):452-461

90 Cohen JJ.Programmed cell death in the immune system.Adv Immunol.1991,50:55-85

91 Gibson GJ,Kohler WJ,Schaffler MB.Chondrocyte apoptosis in endochondral ossification of chick stema.Dev Dyn,1995;203:468-476

92 Horton WE Jr,Udo I,Precht P,et al.Cytokine inducible matrix metallo proteinase expression in immortalized rat chondrocytes is independent of nitric oxide stimulation.In Vitro Cell Dev Biol Anim,1998;34:378-384

93 Gruber HE,Norton HJ,Hanley EN.Anti-apoptotic effects of IGF-1and PDGF on human intervertebral disc cells in vitro.Spine.2000,25(17):2153

94 Lotz JC,Colliou OK,Chin JR.1998volvo award winner in biomechanical studies.Spine,1998;23 (12):2493

95 Handingham TE,Fosang AJ.Proteoglycan:many forms and many functions.FASEB J,1992;6:861

96 Hutton WC,Elmer WA,Boden SD.The effect of hydrostatic pressure on intervertebral disc metabolism.Spine,1999;24:1507-1515

97 Best BA,Guilak F,Setton LA,et al.Compressive mechanical properties of human annius fibrosus and their relationship to biochemical composion.Spine,1994;19:212

98 Hass TL,Davis SJ,Madri JA,et al.Three-demensional typeⅠcollagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2in microvascular endothelial cells.J Biol Chem,1998;273:3604

99 Bond M,Baker AH,Newby AC.Nuclear factor kappa B activity is essential for matrix metalloproteinase-1and-3upregulation in rabbit dermal fibroblasts.Biochem Biophys Res Commun,1999;264:561

100 Ricca A,Biroccio A,Del Bufalo D,et al.Bcl-2 over-expression enhances NF-kappa Bactivity and induces mmp-9transcription in human MCF7(ADR)breast-cancer cells.Int J Cancer,2000;86:188

101 Mengshol JA,Vincenti MP,Coon CI,et al.Interleukin-1induction of collagenase 3(matrix metalloproteinase 13)gene expression in chondrocyte requires p38,c-Jun N-terminal kinase,and nuclear factor kappa B:differtial regulation of collagenase 1and collagenase 3.Arthritis Rheeum,2000;43:801

102 DiBattista JA,Martel-Pelletier J,Fujimoto N,et al.Prostaglandins E2and E1inhibit cytokine-induced metalloprotease expression in human synovial fibroblasts:mediation by cyclic-AMP signaling pathway.Lab Invest,1994;71:270

103 Strongin AY,Collier I,Bannikov G,et al.Mechanism of cell surface activation of 72-kDa typeⅣcollagenase.Isolation of the activated form of the membrane metalloprotease.J Biol Chem,1995;270:5331

104 Maquoi E,Frankenne F,Baramova E,et al.Membrane type 1matrix metalloproteinase associated degradation of tissue inhibitor of metalloproteinase 2in human tumor cell lines.J Biol Chem,2000;275:11368

105 Itoh Y,Ito A,Iwata K,et al.Plasma membranebound tissue inhibitor of metalloproteinases (TIMP-2)specifically inhibits matrix metalloproteinase 2(gelatinase A)activated on the cell surface.J Biol Chem,1998;273:24360

106 Sato H,Kinoshita T,Takino T,et al.Activation of a recombinant membrane type 1-matrix metalloproteinase(MT1-MMP)by furin and its interaction with tssue inhibitor of metalloproteinases(TIMP-2).FEBS Lett,1996;393:101

107 Pei D,Weiss SJ.Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1process progelatinase A and express intrinsic matrix-degrading activity.Nature,1995;375:244

108 Brew K,Dinkarpandian D,Nagase H.Tissue inhibitors of metalloproteinases:evolution,structure and function.Biochem Biophys Acta,2000;1477:267

109 Bode W,Fernandez Catalan C,Grams F,et al.Insights into MMP-TIMP interactions.Ann N Y Acad Sci,1999;878:73

110 Bukwalter JA.Spine update:Areing and degeneration of human intervertebral disc.Spine,1995;20:1307

111 Fujita K,Nakagawa T,Hirabayashi K,et al.Neutral proteinases in human intervertebral disc.Role in degeneration and probable origin. Spine,1993;18(13):1766-1773

112 Liu J,Roughley PJ,Mort JS,et al,Idtentification of human intervertebral disc stromeiysin and its invoivement in matrix degeneration.J Orthop Res,1991;9:568

113 Kang JD,Georgescu HI,McIntyre-larkin L,et al.Herniated discs spontaneously produce matrix metalloproteinases,nitric oxide,interleukin-6and prostaglandin E2.Spine,1995;20:2373

114 Kang JD,Georgescu HI,McIntyre-larkin L,et al.Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases,nitric oxide,interleukin-6,and prostaglandin E2.:Spine,1996;21:271

115 Nemoto O,Yamagishi M,Yamada H,et al.Matrix metalloproteinase-3production by human degenerated intervertebral disc.J Spine Disord,1997;10:493

116 Yamagishi M,Nemoto H,Kikuchi T,et al.Ruptured human disc tissues produce matrix metalloproteinase-3and in terleukin-1.Trans Orthop Res Soc,1992;16:438

117 Nishida T.Kinetics of tissue and serum matrix metalloproteinase-3and tissue inhibitor of metalloproteinase-1in intervertebral disc degeneration and disc herniation.Kurume Med J,1999;46:39

118 Crean JKP,Roberts S,Jaffray DC,er al.Matrix metalloproteinases in the human intervertebral disc:role in disc degeneration and scoliosis.Spine,1997;22(24):2877

119 Gaetani P,Rodriguez Y,Baena R,et al.Collagenase-1and stromelysin distribution in fresh human herniated intervertebral disc:apossible link to the in vivo inflammatory reactions.Neurol Res,1999;21:677

120 Matsui Y,Maeda M,Nakagami W,et al.The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation.Spine,1998;23:863

121 Haro H,Shinomiya K,Murakami S,et al.Upregulated expression of matrilysin and neutro-phil collagenase in human herniated discs.J Spine Disord,1999;12:245

122 Nemoto O,Yamagishi M,Kikuchi T,et al.Effect of IL-1and IL-6on MMP-3and MMP-1 production in human degenerated disc tisuse.Rinsho Seikei Geka,1994;29:369

123 Khokher MA,Crock HV,Brown MF,et al.Measurement of proliferative and degenerative activity of chondrocyte and osteoblast isolated from the end-plate of patients with disc disease.International Society for the Study of the Lumbar Spine,Seattle,1994;10:233

124 Haro H,Crawford HC,Fingleton B,et al.Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption.J Clin Invest,2000;105:143

125 Ng SCS,Weiss JB,Quennel R,et al.Abnormal connective tissue degrading enzyme patterns in prolapsed intervertebral disc.Spine,1990;11:695

126 Komori H,Shinomiya K,Nakai O,et al.The natural history of herniated nucleus pulposus with radiculopathy.Spine,1996;21:225

127 Doita M,Kanatani T,Ozaki T,et al.Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinase leading to disc resorption.Spine,2001;26:1522

128 Pelletier JM,Zafarrullah M,Kodama S,et al.In vivo effects of interleukin-1on the synthusis of metalloproteinase,TIMP,plasminogen activators and inhibitors in human articular cartilage.J Rheumatol,1991;18:80

129 Haro H,Murakami S,Komori H,et al.Chemonucleolysis with human stromelysin-1.Spine,1997;22:1098

130 Chandrasekhar S,Harvey AK,Dell CP,et al.I-dentification of a novel chemical series that blocks interleukin-1-stimulated metalloproteinase activity in chondrocyte.J Pharmacol Exp T-her,1995;273:1519

131 Caron JP,Fernandes JC,Martal-Pelletier J,et al.Chondroprotective effect of intraarticular injection of interleukin-1receptor antagonist in experimental osteoarthritis.Arthritis Rheum,1996;39:1535

132 Gordon JL,Drummond AH,Galloway WA.Metalloproteinase inhibitors as therapeutics.Clin Exp Rheumatol,1993;11(suppl 8):S91

133 Dipaspuale G,Cacesse R,Paternak R,et al.Proteoglycan and collagen-degrading enzyme from human interleukin-1sitmulated chondroccyte from several species:proteoglycanase and collagenase inhibitors as potentially new disease-modifying antiarthritis agents.Proc Soc Exp Biol Med,1986;183:262

134 Mort JS,Dodge GR,Roughley PJ,et al.Direct evidence for active metalloproteinase mediating matrix degradation in interleukin-1-stimulated human articular cartilage.Matrix,1993;13:95

135 Cacesse RG,DiJoseph JF,Scotnicki JS,et al.Inhibition of interleukin-1(IL-1)induced neutral proteinases from rabbit articular chondrocyte by WY-46,135and WY-48,989.Agents Actions,1991;34:223

136 Golub L,Ramamurthy NS,MacNamara TF,et al.Tetracyclines inhibit connective tissue breakdown:New therapeutic imlications for an old family of drugs.Crit Rev Oral Biol Med,1991;2:297

137 Liu Ye,Mang m,Greene J,et al.Preparation and characterization of recombinant tissue inhibitor of metalloproteinase-4(TIMP-4).J Biol Chem,1997;272:20479-20483

138 Denis LJ,Verweij J.Matrix metalloproteinase inhibitors:present achievements and future prospects.Invest New Drugs,1997;15:175

139 Antonion J,Goudsouzian NM,Heathfield TF,et al.The human lumbar endplate.Evidence of changes in biosynthesis and denaturaation of the extracellular matrix with growth,maturation,aging,and degeneration.Spine,1996;21:1153

140 Boos N,Nerlich AG,Wiest I,et al.Immunolocalization of typeⅩcollagen in human lumbar intervertebral discs during ageing and degeneration.Histochem Cell Biol,1997;108:471

141 Crean SJ,Firrozeai R,Hopper C.The role of three-dimensional computed tomographic reconstruction in orthognathic surgery planaing.Br J Oral Maxillofac Surg,1997;35:376

142 Errington RJ,Puustjarvi K,White IR,et al.Characterisation of cytopassm-filled processes in cells of the intervertebral disc.J Anat,1998;192(Pt 3)369

143 Goupille P,Jayson MI,Valat JP,et al.Matrix metalloproteinases:the clue to intervertebral disc tegeneration?Spine,1998,23:1 612

144 Hayes AJ,Benjamin M,Ralphs JR.Role of actin stress fibres in the development of the intervertebral disc:cytoskeletal control of extracellular matrix assembly.Dev Dyn,1999;215:179

145 Huttun WC,Ganey TM,Elmer WA,et al.Does long-term compressive loading on the intervertebral disc cause degeneration.Spine;2000,25:2993

146 Ishihara H,McNally DS,Urban JP,et al.Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk.J Appl Physiol,1996;88:839

147 Kaapa E,Wang W,Takala TE,et al.Elevated protein content and prolyl 4-hydroxylase ativity in severely degenerated human annulus fibrosus.Connect-Tissue-Res,2000;41:93-99

148 Kingma I,van-Dieen JH,Nicolay K,et al.Monitoring water content in deforming intervertebral disc tissue by finite element analysis of MRI data.Magn-Reson-Med,2000;44:650

149 Melrose J,Ghosh P,Taylor TK.A comparative analysis of the differential sptial and temporal distributions of the large(aggrecan,versican)and small(decorin,biglycan,fibromodulin)proteoglycans of the intervertebral disc.JAnat,2001;198(Pt 1):3

150 Melrose J,Smith S,Rodgers K,et al.Immunolocalisation of BPTI-like serine proteinase inhibitory proteins in mast cells,chondrocytes and intervertebral disc fibrochondrocytes of o-vine and bovine connective tissues.An immunohistochemical and biochemical study.Histochem Cell Biol,2000;114:137

151 Nachemson AL.Intradiscal pressure.J Neurosurg.1995,82:1 095

152 Oegema TR,Johnson SL,Aguiar DJ,et al.Fibronectin and its fagments increase with degeneration in the human intervertebral disc.Spine,2000;25:2742

153 Razaq S,Urban JP,Wilkins RJ.Regulation of intracellular pH by bovine intervertebral disc cells.Cell Physiol Biochem,2000;10(1-2):109

154 Roberts S,Ayad S,Menage PJ.Immunolocalisation of typeⅥcollagen in the intervertebral disc.Ann Rheum Dis,1991;50:787

155 Roberts MP,Robinson F.The current treatment of lumbar disc herniation.Conn Meb,1994;58:579

156 Roberts S,Menage J,Duance V,et al.TypeⅢcollagen in the intervertebral disc.Histochem J,1991;23(11-12):503

157 Schollmeier G,Lahr ER,Lewandrowski KU.Observations on fiber-forming collagens in the anulus fibrosus.Spine,2000;25:2736

158 Takae R,Matsunaga S,Origuchi N,et al.Immunolocalization of bone morphogenetic protein and its receptors in degeneration of intervertebral disc.Spine,1999;24:1397

159 Tanaka N,Ishida T,Hukuda S,et al.Purification of a low-molecular-weight phospholipase A (2)associated with soluble high-molecularweight acidic proteins from rabbit nucleus pulposus and its comparison with a rabbit splenic groupⅡaphospholipase A(2).J Biochem(Tokyo),2000;127:985

160 Asano s,Kaneda K,Umehara S,et al.The mechnical properties of the human L4.5function spinal unit during cyclic loading,the structural effect of the posterior elements.Spine,1992;11:134

161 Brinckmann P,Grootenboer H.Change of disc height,radial disc bulge,and intradiscal pres-sure from discectomy:An in vitro investigation on human lumbar discs.Spine,1991;16:6541

162 Harrington J Jr,Sungarian A,Rogg J,et al.The relation between vertebral endplate shape and lumbar disc herniations.Spine,2001;26:2133

163 Kong WZ,Goel VK,Gilbertson LG,Prediction of biomechanical parameters in the lumar spine during static sagittal plane lifting.J Biomech Eng,1998;120:273

164 Lundon K,Bolton K.Structure and function of the lumbar intervertebral disk in health,aging,and pathologic conditions.J Orthop Sports Phys Ther,2001;31:291

165 Nachemson A,Zdeblick TA,Brien JP,et al.Lumbat disc desease with discogenic pain.Spine,1996;21:835

166 Sanan A,Rengachary SS.The history of spinal biomechanics.Neurosurg,1996;39:657

167 Sapega AA.Current concepts review.Muscle performance evalution in orthpadic pratise.J Bone Joint Surg(Am),1990;72:1562

168 Nerlich AG,Boos N,Wiest I,et al.Immunolacatization of major interstitial collagen types in human lumbar intervertebral discs of various ages.Virchows Arch,1998;432(1):267

169 Handa T,Ishihara H,Orshima H,et al.Effects of hypostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervetebral disc.Spine,1997;22 (10):1085

170 Ishihara H,McNally DS,Urban JP,et al.Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk.J Appl Physiol,1996;80(3):839

171 Sztrolovice R,Alini M,Roughley PJ,et al.Aggrecan degradation inhuman intervertebral discs and articular cartilage.Biochem J,1997;15(326 Pt 1):235

172 Antonion J,Goudsouzian NM,Heathfield TF.et al.Evidence of changes in biosynthesis and degeneration of the extracellular matrix with growth,maturation,aging,and degeneration. Spine,1996;21(10):1153

173 Kuiper JI,Verbeek JHAM,Frings-Dresen MHW,et al,Keratan sulfate as a potential biomarker of loading of the intervertebral disc.Spine,1998;23(6):657

174 Crean JKG,Roberts S,Jaffray DC,et al.Matrix metalloproteinases in the human intervertebral disc:role in disc degeneration and scoliosis.Spine,1997;22(24):2877

175 Roberts S,Caterson B,Evans H,et al.Proteoglycan components of the intervetebral disc and carticage end piate.An immunolocalization study of animal and human.Histochem J,1994;26(5):402

176 Boos N,Nerlich AG,Wiest I,et al.Immunocalization of type V collagen in human lumbar intervertebral discs during ageing and degeneration.Hischeme Cell Biol,1997;108(6):471

177 Yasumoto M,Matsuyoshi M,Wakao N,et al.The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation.Spine.1998;23:863

178 Hasty KA,Jeffrey JJ,Hibbs MS,et al.The collagen substrate specifity of human neutrophil collagenase.J Biol Chem.1987;262:1048

179 Knauper V,Lopez-Otin C,Smith B,et al.Biochemical characterization of human collagenase-3.J Biol Chem.1996;271:1544

180 Nagano T,Yonenobu K,Miyamoto S,et al.Distribution of the basic fiboblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral disc.Spine,1995;20:1972

181 Ariga K,Yonenobu K,Nakase T,et al.Mechanical stress-inducedapoptosis of endplate chondrocytes in organ-cultured mouseintervertebral discs:an ex vivo study.Spine,2003;28 (14):1528-1533

182 Shinmei M,Kikuchi T,Yamagishi M,et al.The role of interleukin-1on proteoglycan metabolism of rabbit anulus fibrosus cells cultured in vitro.Spine,1991;13:1294

183 Jacoby AS,Melrose J,Robinson BG,et al.Sec-retary leucocyte proteinases inhibitor is produced by human articular cartilage chondrocyte and intervertebral disc fibrochondrocyte.Eur J Biochem,1993;218:951

184 Cole TC,Melrose J,Ghosh P.Isolation and chracterisation of a neutral proteinase from the canine intervertebral disc.Biochem Biophys Acta,1989;990:254

185 Matrisian LM.Metalloproteinases and their inhibitor in matrix remodeling.Trends Genet,1990;6:121

186 Pearce RH,Mathieson JM,Mort JS,et al.The effect of age on abundance and fragmentation of protein of the human intervertebral disc.J Orthop Rse,1989;7:861

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈