首页 理论教育 三疣梭子蟹生长相关性状的定位

三疣梭子蟹生长相关性状的定位

时间:2022-02-09 理论教育 版权反馈
【摘要】:已有研究通过性状测量估算了三疣梭子蟹生长相关性状的遗传力和遗传相关,如体重和体高等。三疣梭子蟹生长相关性状包括体重、全甲宽、体高等,是受多个基因影响的数量性状。本研究是首次关于三疣梭子蟹生长相关性状QTL定位的报道。② 能够为三疣梭子蟹的分子标记辅助选择进一步精细定位这些QTL,最终确定响应生长相关性状的每个基因。生长相关性状的表型相关系数如表22所示。

自2004年开始,黄海水产研究所在三疣梭子蟹遗传改良方面做了大量工作,并取得了很大进步,构建了第一个中等密度的遗传连锁图谱(Liu et al,2012),产量和生长速度也都获得了提高。快速生长群体在2012年已被中国水产良种委员会评审和认定为“黄选一号”新品种(李健等,2013)。生长相关性状具有连续差异性,是数量性状,受遗传和环境双重因素影响(Lynch et al,1998),许多数量性状具有复杂的遗传模式,但是很多性状受主效QTL的影响(Lynch et al,1998)。由于潜在的重要经济性状具有的遗传增益,多种水产动物进行了遗传连锁图谱的构建和重要经济性状的QTL定位(Guo et al,2012)研究,这些性状包括生长(Guo et al,2012),抗病(Moen et al,2007;Ozaki et al,2010),受环境影响相关性状(Cnaani et al,2003)。目前为止,只有少数关于甲壳动物生长相关QTL定位的研究(Li et al,2006)。原因之一是用于克服因为甲壳动物驯化、选择育种、维持高质量的选育群体、动物数量性状的测量和数量巨大的染色体等技术障碍带来的巨大花费。三疣梭子蟹具有106条染色体,如构建同等密度的遗传连锁图谱用于QTL定位,将需要比鱼类或者贝类更多的分子标记。

目前,多种水产养殖动物的遗传改良已经取得了显著进步,这些遗传改良应用传统的性状测量和谱系分析。这些水产动物包括,大菱鲆(Sánchez et al,2011),虹鳟(Wringe et al,2010),太平洋狮爪扇贝(Petersen et al,2012)等。已有研究通过性状测量估算了三疣梭子蟹生长相关性状的遗传力和遗传相关,如体重和体高等(高保全等,2010;刘磊等,2009)。分子标记辅助育种(MAS)可以大幅增加针对这些生长相关性状的选育计划中动物选择的准确性(Houston et al,2008)。三疣梭子蟹生长相关性状包括体重、全甲宽、体高等,是受多个基因影响的数量性状。对这些性状的改良是水产动物育种计划关注的主要方面,可以通过表型选择进行,而通过分子标记辅助育种(MAS),遗传增益将更加快速(Wang et al,2006;Dekkers et al,2002;Andersson et al,2004)。随着分子标记开发技术的迅速发展,通过分子标记辅助育种(MAS)的QTL定位在育种计划中的应用已可行。对数量性状位点的QTL定位是对复杂性状遗传学基础和遗传方式进行剖析的第一步(Lynch and Walsh1998)。本研究是首次关于三疣梭子蟹生长相关性状QTL定位的报道。本研究的主要目标:① 定位影响三疣梭子蟹10个生长相关性状的QTL位点。② 能够为三疣梭子蟹的分子标记辅助选择进一步精细定位这些QTL,最终确定响应生长相关性状的每个基因。

2008年从三疣梭子蟹莱州湾野生群体中挑选个体大,无任何机械损伤及其他疾病、发育良好的种蟹(♂)作为父本,从海州湾野生群体中挑选个体大,无任何机械损伤及其他疾病、发育良好的种蟹(♀)作为母本,进行1♂ 3 3♀交配,2009年4月初培育出F1代家系。2009年8月从F1代家系中挑选符合上述条件的雌、雄蟹。按照1♂ 3 3♀的方式进行家系内交配,越冬后于2010年4月上旬培育出F2家系。同年8月下旬,随机取家系的110个个体及亲本,测量记录全甲宽、甲宽、甲长、体重等数据后,取蟹的大螯肌肉装入灭菌的1.5mL Eppendorf管中编号后置于冰箱中保存。

10个生长相关性状的测量示意图如图31所示,

图31 所选10个三疣梭子蟹生长性状测量示意图

QTL定位所用遗传连锁图谱为Liu等(2012a)构建的三疣梭子蟹遗传连锁图谱。应用Windows QTL Cartographer2.0(Wang et al,2004)复合区间作图法(Composite Inteval Mapping)定位单个位点QTL。选择Windows QTL Cartographer2.0软件中的模型6进行复合区间作图,窗口选择10。区间内出现一个QTL的LOD值表示为log10(L1/L0),L1表示模型存在一个QTL的最大或然性,L0表示区间内不存在QTL的最大或然性。本研究分别设定针对雌雄图谱的LOD的临界值为3.0,相当于单一标记分析法达到0.001的水平。QTL最可能位置就是最大LOD值所对应的位置。单个QTL可以解释的表型变异是通过求解部分相关系数的平方得到(R2)。R2及单个QTL在其峰值位置的加性效应可以从Windows QTL Cartographer2.5的输出结果中得到。

9.2.1 性状分布及相关分析

选择单样本的Kolmogorov-Smirnov函数对各生长指标进行正态分布检验,检验结果如图32,表33所示。110个个体的体重在62.8到160.8之间,平均为1.2.35  6 1.86 g。所有测量的性状都显示出连续变异的特点,大部分性状服从正态分布。最大正相关系数为全甲宽和甲长的0.930。

生长相关性状的表型相关系数如表22所示。对所分析数量性状的相关分析结果表明,各性状的表型相关均呈极显著水平(P , 0.001),表型相关系数在0.4.0 到0.931之间。

图32 作图群体中各表型性状的分布图(Ⅰ)

图32 作图群体中各表型性状的分布图(Ⅱ)

表33 三疣梭子蟹生长相关性状正态分布检验结果

*表明显著偏离正态分布基于Kolmogorov-Smirnov拟合优度检验。

9.2.2 QTL定位

在雌性图谱和雄性图谱上,共定位了25个关于所选10个生长相关性状的QTL,其中,16个定位到雄性图谱上,9个定位到雌性图谱上(图33和图34,表34、表35)。雌性和雄性QTL检测结果显著差异的原因尚不清楚,本研究结果与Li等(2006)研究结果类似,Li等(2006)在雄性斑节对虾图谱上检测到体长和甲长相关QTL,但是并未在雌性图谱上检测到QTL。同样,Wringe等(2010)在虹鳟雄性图谱和雌性图谱上定位了具有显著数量差异的QTL。而鲑鱼科鱼类通常在雄性中具有较低的重组率,端粒部分具有较高的重组率,雌性相反(Lien et al,2011)。雌雄图谱QTL数量统计上的差异也许可以反映出染色体重组率上的相关差异。

表34 各性状表型相关系数和高保全等(2008)结果相比较

**表示极显著正相关(P , 0.001).

表35 三疣梭子蟹生长相关QTL在雌性图谱上的定位结果统计

图33 三疣梭子蟹生长相关性状QTL定位在雌性图谱上的定位结果

在所检测到的25个QTL中,12个QTL在基因组水平上表现出极显著水平,13个QTL表现出显著水平。每个性状检测到的QTL在1~5之间。全甲宽共检测到4个QTL,可解释的遗传变异共73%。甲长共检测到4个QTL,可解释的遗传变异共43%。体高检测到3个QTL,可解释的遗传变异共46%。

表36 三疣梭子蟹生长相关性状QTL在雄性图谱上的定位结果

续表

图34 三疣梭子蟹生长相关性状QTL定位在雄性图谱上的定位结果(Ⅰ)

图34 三疣梭子蟹生长相关性状QTL定位在雄性图谱上的定位结果(Ⅱ)

图35 三疣梭子蟹全甲宽相关QTL在雄性图谱16号连锁群上的定位结果

第一侧齿间距检测到3个QTL,可解释的遗传变异共34%。第二侧齿间距检测到5个QTL,可解释的遗传变异在0.68%~11.08%之间,加性效应值在-0.9.8 到 0.630之间。第一步足长节长检测到2个QTL,可解释的遗传变异共35.62%。大螯长节长检测到1个QTL,可解释的遗传变异为15.19%。甲宽未检测到QTL。

图36 三疣梭子蟹体重相关QTL在雄性图谱16号连锁群上的定位结果

图35和图36分别展示了定位在雄性图谱16号连锁群上全甲宽和体重的QTL。最后,共检测到2个体重的QTL,分别位于雌性图谱的17号连锁群上,雄性图谱的16号连锁群上,可解释的遗传变异分别为38.01%和17.65%。

已有研究证明(高保全等,2010)所选性状具有较高的遗传力,预期会出现几个具有大的LOD值的QTL。高保全等(2010)用13个半同胞和37个全同胞家系的400只成蟹估计了三疣梭子蟹体重遗传力,结果表明,三疣梭子蟹体重狭义遗传力介于0.42 到0.64之间,证实本研究所选用实验个体有利于遗传选择和QTL检测。本研究中,所选择的10个生长相关性状具有较高的正向相关性(P , 0.001)。高保全等(2008)报道了与本研究相似的体重和生长相关性状的表型相关。

体重和表型性状的表型相关和遗传相关(刘磊等,2009)结果表明,与体重相关的假定QTL具有多效性。本研究结果推测,如果体重和其他生长相关性状具有较高的遗传相关,其中一个性状的QTL可能出现在与其具有较高遗传相关性状QTL同一染色体的某一区域。但是,我们并未在雌性图谱上发现重叠QTL。雌雄图谱定位结果的差异性指出基因多效性参与了对性状的控制,对不同性状QTL的检测能力存在差异性。对不同性状QTL检测存在差异的原因可能是,① 图谱上大的标记间隔;② 个别性状遗传差异小;③ 对具有较低效应值的QTL检测能力有限。如图36所示的雄性图谱,在1号,16号和28号连锁群上发现多个重叠QTL,可以解释为一因多效性。另一方面,重叠QTL也可能是分离但是紧密连锁的位点影响无多效性性状QTL的检测。但是,从本实验的结果可以推断,三疣梭子蟹部分生长相关性状可能分享同样的遗传原件。本实验的结果将对三疣梭子蟹遗传选择策略提供一定的帮助。

9.2.3 展望三疣梭子蟹分子标记辅助育种

分子标记辅助育种(MAS)利用表型和遗传相关信息选择或者筛选目标性状的理想特性。基于此目的,QTL定位研究已经成为实现针对复杂性状的分子标记辅助育种的重要努力过程。随着QTL被发现的遗传标记已经被成功整合到植物分子标记辅助育种的计划中(Bouchez et al,2002;Brondani et al,2002;Pruitt et al,2003)。本研究中,多个标记,如16号连锁群上的A5f860与体高和全甲宽重叠QTL相联系。在更高分辨率连锁图上的这些标记可以借助测序技术来发现生长相关候选基因。需要进一步利用更多家系的实验来确定这些标记与生长相关的可靠性。基于本研究中获得的QTL定位结果,正在努力发现标记分离带来的等位基因突变体,以及分离和表征QTL的周围区域。如果可以发现和证实在QTL区域的候选基因和突变,这方面的研究结果可能被应用到梭子蟹科的其他种中,比如青蟹,因为它们很可能在同源染色体区域具有这些生长相关性状的QTL。最后,本实验的结果最终有助于三疣梭子蟹分子标记辅助育种(MAS),并用于识别负责控制生长相关性状的个体基因。然而,每cM图谱上可能有数以千计的基因,每个QTL置信区间内可能有数以百计的基因,需要更多研究个体和更多的标记数量,并且需要更好的统计模型来检测QTL,识别负责控制生长相关性状的基因。

(作者:刘磊,李健,刘萍,赵法箴,高保全,杜盈)

参考文献

[1] Allen P J,Amos W,Pomeroy,et al . Microsatellite variation in greyseals(Halichoerus grypus)shows evidence of genetic differentiation between two British breeding colonies [J] . Mol Ecol,1995,4.653.662 .

[2] Andersson L,Georges M . Domestic-animal genomics:deciphering the genetics of complex traits[J] . Nature Reviews Genetics,2004,5:202-212.

[3] Ardren W R,Borer S . Inheritance of12microsatellite loci in Oncorhynchusmykiss [J] . J Hered .1999 . 90(5):529-536.

[4] Armstrong K C,Keller W A . Chromosome pairing in haploids of Brassica oleracea[J] . Canadian Journal of Genetic,Cytology,1982,24:735-739.

[5] Ashie T N,Daniel G B,Edward P C,et al . Parentage and relatedness determination in farmed Atlantiesalmon(Salmosalar)usingmicrosatellitemarkers [J] . Aqucculture,2000,182:73-83.

[6] Ashie T N,Daniel G B,Edward P,et al . Parentage and relatedness determination in farmed Atlanticsalmon(Salmosalar)usingmicrosatellitemarkers[J] . Aquaculture,2000,182:73-83.

[7] Baker N,Byrne K,Moore S,et al . Characterization ofmicrosatellite loci in the redclaw crayfish,Cherax quadricarinatus [J] . Mol Ecol,2000,9.494.495 .

[8] Barker J S F . A global protocol for de termining genetic distances among domestic livestock breeds[J]//Proceeding of the5th World Congress on Genetics Applied to Livestock production . Onario:University of Guelph,1994 .501.5.8 .

[9] Belfiore N M,May B . Variablemicrosatellite loci in redswamp crayfish,Procambarus clarkii,and their characterization in other crayfish taxa [J] . Mol Ecol,2000,9:2230-2234 .

[10] Belkum A V,Scherer S,Alphen L V,et al . Shortsequence DNA repeats in prokaryotic genomes [J] . Mol Biol Rev,19.8.62(2):275.2.3 .

[11] Belkum A V,Scherer S,Leeuwen V,et al . Variable number of tandem repeats in clinicalstrains of Haemophilus influenzae [J] . Infect Immun,19.7.65(12):5017.50.7 .

[12] Bentzen P,Taggart C T,Ruzzante,et al . Microsatellite polymorphism and the populationstructure of Atlantic cod(Gadusmorhua)in the northwest Atlantic [J] . Can J Fish Aquat Sci,1996,53.2706.2721 .

[13] Bentzen P . Isolation and inheritance ofmicrosatellite loci in the Dungeness crab(Brachyura:Cancridae:Cancermagister)[J] . Genome,2004,47.325.331 .

[14] Benzie J A H . Penaeid genetics and biotechnology[J] . Aquaculture,1998,164.23.47 .

[15] Botstein D,White R L,Skolnick M . Construction of genetic linkagemap inman using restriction fragment length polymorphisms[J] . American Journal of Human Genetics,1980.32.314 .

[16] Bouchez A,Hospital F,Causse M,et al . Marker assisted introgression of favorable alleles at QTL betweenmany elite lines ofmaize[J] . Genetics,2002,162.1945.1959 .

[17] Brondani C,Rnagel N,Brondani V,et al . QTLmapping and introgression of yield related traits from Oryza glumaepatula to cultivated rice(Oryzasatira)usingmicrosatellitemarkers[J] . Theoretical and Applied Genetics,2002,104.1192.1203 .

[18] Callen D F,Thompson A D,Shen Y,et al . Incidence and origin of“null” alleles in the(AC)nmicrosatellitemarkers [J] . Am J Hum Genet,1993,52.922.927 .

[19] Cervera,M T,Storme V,Ivens B,et al . Dense genetic linkagemaps of three Populusspecies(Populus deltoides,P . nigra and P . trichocarpa)based on AFLP andmicrosatellitemarkers[J] . Genetics,2001,158:787-809.

[20] Chakravarti A,Lasher LK,Reefer J E . Amaximum likelihoodmethod for estimating genome length using genetic linkage data[J] . Genetics,1991,128:175-82.

[21] Chang Y M,Liang L Q,Li S W,et al . Aset of newmicrosatellite loci isolated from Chinesemitten crab,Eriocheirsinensis [J] . Molecular Ecology Notes,20.6.6(4),1237.12.9 .

[22] Chistiakov D A,Tsigenopoulos C S,Lagnel J,et al . A combined AFLP andmicrosatellite linkagemap and pilot comparative genomic analysis of Europeansea bass Dicentrarchus labrax L[J] . Animal Genetics,2008,39:623-634.

[23] Cnaani,A,Hallerman E M,Ron M,et al . Detection of a chromosomal region with two quantitative trait loci,affecting cold tolerance and fishsize,in an F2 tilapia hybrid[J] . Aquaculture,2003.2.3(1):117-128.

[24] Coimbra M R M,Kobayashi K,Koretsugu S,et al . A genetic linkagemap of the Japanese flounder Paralichthys olivaceus[J] . Aquaculture,2003,220:203-218.

[25] Crawford A M,Littlepohn R P . The use of DNAmarker in deciding conservation priorities insheep and other livestock[J] . Animal Genetic Resourcse Information,1998,23:21-26.

[26] Dekkers J C M,Hospital F . Multifactorial genetics:The use ofmolecular genetics in the improvement of agricultural populations[J] . Genetics,2002,3:22-32.

[27] Dena R J,Nigel P P,Peter J,et al . Parentage determination of Kurumashrimp Penaeus japonicus usingmicrosatellitemarkers(Bate)[J] . Aquaculture,2004,235:237-247.

[28] Dong S,Kong J,Zhang Q . Pedigree tracing of Fenneropenaeus chinensis bymicrosatellite DNAmarkers genotyping[J] . Acta Oceanologica Sinica .2006,5:151-157.

[29] Fishman L,Kelly A J,Morgan E,et al . A geneticmap in the Mimulus guttatusspecies complex reveals transmission ratio distortion due to heterospecific interactions[J] . Genetics,2001,159:1701-1716.

[30] G M Cordeiro,Casu R,Mcintyre,Manners J M,Henry R J .Microsatellitemarkers fromsugarcane(Saccharum)ESTs cross transferable to erianthus andsorghum[J] . Plant Science,2001.1.0(6):1115.11.3 .

[31] Gao H,Kong J,Liu P,et al . Establishment ofmicrosatellite-based triplex PCR for parentage analysis of Chineseshrimp Fenneropenaeus chinensis[J] . Acta Oceanologica Sinica,2006,26:65-4

[32] Gopurenko D,Jane M H,Jing M . Identification of polymorphicmicrosatellite loci in themud crab Scyllaserrata(Brachyura:Portunidae)[J] . Molecular Ecology Notes,2002,2.481.483 .

[33] Guo X,Li Q,Wang Q Z,et al . Geneticmapping and QTL analysis of growth-related traits in the Pacific Oyster[J] . Marine Biotechnology,2012,14:218-226.

[34] Guyomard R,Mauger S,Tabet-Canale K,et al . A typeⅠ and typeⅡmicrosatellite linkagemap of rainbow trout(Oncorhynchusmykiss)with presumptive coverage of all chromosome arms[J] . BMC Genomics,2006,7:302.

[35] Hancock J M . Genomesize and the accumulation ofsimplesequence repeats:implications of new data from genomesequencing projects [J] . Genetica,2002.1.5(1):93.1.3 .

[36] Herbinger C M,Doyle R W,Pitman E R,et al . DNA fingerprint based analysis of parental andmaternal effects on offspring growth andsurvival in communally reared rainbow trout[J] . Aquaculture,1995,137:245-256.

[37] Hines H C,Zikakis J P,Haenlein G F W,et al . Linkage relationships among loci of polymorphism in blood andmilk of cattle[J] . Journal of Dairy Science,19.1.64(14):71-76.

[38] Houston R D,Haley C S,Hamilton A,et al . Major quantitative trait loci affect resistance to infectious pancreatic necrosis in atlanticsalmon(Salmosalar)[J] . Genetics,2008,178:1109-1115.

[39] Hubert S,Higgins B,Borza T,et al . Development of a SNP resource and a genetic linkagemap for Atlantic cod(Gadusmorhua)[J] . BMC Genomics,2010,11:191.

[40] Hulata G . Geneticmanipulations in aquaculture:a review ofstock improvement by classical andmodern technologies[J] . Genetica,2001,111:155-173.

[41] Hwang T Y,Sayama T,Takahashi M,et al . High-density integrated linkagemap based on SSRmarkers insoyabean[J] . DNA Research,2009,16:213-225.

[42] Jaime C,Carmen B,Pablo P,et al . Potentialsources of error in parentage assessment of tubot(Scophthalmusmaximus)usingmicrosatellite loci[J] . Aquaculture,2004,242:119-135.

[43] Jauert P A,Edmiston S N,Conway K,et al . RAD1 controls themeiotic expansion of the human HRAS1minisatellite in Saccharomyces cerevisiae [J] . Molecular and Cellular Biology,20.2.22(3):953.9.4 .

[44] Javier P,José M P,Gonzalo M R,et al . Development of amicrosatellitemultiplex PCR for Senegalesesole(Soleasenegalensis)and its application to broodstockmanagement[J] . Aquaculture,2007,256:159-166.

[45] Jerry D R,Evans B S,Kenway M,et al . Development of amicrosatellite DNA parentagemarkersuite for black tigershrimp Penaeusmonodon[J] . Aquaculture,2006,255:542-547.

[46] Jerry D R,Preston N P,Crocos P J,et al . Application of DNA parentage analyses for determining relative growth rates of Penaeus japonicus families reared in commercial ponds[J] . Aquaculture,2006,254:171-181.

[47] Kasha K J,Kao K N . High frequency haploid production in barley(Hordeum vulgare L .)[J] . Nature,1970,225:874-876.

[48] Katti M V,Ranjekar P K,Gupta V S . Differential distribution ofsimplesequence repeats in eukaryotic genomesequences [J] . Molecular Biology and Evolution,2001,18:1161-1167 .

[49] Klevytska A M,Price L B,Schupp J M,et al . Identification and characterization of variable number tandem repeats in the Yersinia pestis genome [J] . Journal of Clinical Microbiology,20.1.39(9):3179.31.5 .

[50] Kocher T D,Lee W,Sobolewska H,et al . A genetic linkagemap of a cichlid fish,the tilapia(Oreochromis niloticus)[J] . Genetics,1998,148.1225.1232 .

[51] Lee B Y,Lee W J,Streelman J T,et al . Asecond generation genetic linkagemap of tilapia(Oreochromisspp)[J] . Genetics,2005,170:237-244.

[52] Lerceteau K,Steven W . Development of amultiplex PCRmicrosatellite assay in brown trout(Salmo trutta),and its potential application for the genus[J] . Aquaculture,2006,258:641-645.

[53] Li L,Guo X . AFLP-based genetic linkagemaps of the Pacific oyster Crassostra gigas Thunberg[J] . Marine Biotechnology,2004,6:26-36.

[54] Li Y,Mudagandur K,Shekhar M,et al . Development of twomicrosatellitemultiplexsystems for black tigershrimp(Penaeusmonodon)and its application in genetic diversitystudy for two populations[J] . Aquaculture,2006,266:279-288.

[55] Li Z X,Li J,Wang Q Y,et al . AFLP-based genetic linkagemap ofmarineshrimp Penaeus(Fenneropenaeus chinensis)[J] . Aquaculture,2006,261:463-472.

[56] Li,Y L,Dong Y B,Niu S Z . QTL Analysis of popping fold and the consistency of QTL under two environments in popcorn[J] . Acta Genetica Sinica,2006,33:724-732.

[57] Liu L,Li J,Liu P,et al . A genetic linkagemap ofswimming crab(Portunus trituberculatus)based on SSR and AFLPmarkers[J] . Aquaculture,2012,344:66-81.

[58] Liu P,Meng X H,Kong J,et al . Polymorphic analysis ofmicrosatellite DNA in wild populations of Chineseshrimp(Fenneropenaeus chinensis)[J] . Aquactulture Research .2006,37:556-562.

[59] Liu Z,Karsi A,Li P,et al . An AFLP-based genetic linkagemap of channel catfish Ictalurus punctatus constructed by using an interspecific hybrid resource family[J] . Genetics,2003,165:687-694.

[60] Lynch M,Walsh B . Genetics and analysis of quantitative traits[M] . Sunderland:Sinauer Associates,1998.

[61] Masatsugu T,Anna B,Takuma S,et al . Isolation and characterization ofmicrosatellite DNAmarkers frommangrove crab,Scylla paramamosain [J] . Molecular Ecology Notes,2005,5.794.795 .

[62] McDonald G J,Danzmann R G,Ferguson M M . Relatedness determination in the absence of pedigree information in three culturedstains of rainbow trout(Oncorhynchusmykiss)[J] . Aquaculture,2004,233:65-78.

[63] Moen T M . Baranski A . Sonesson K,et al . Confirmation and fine-mapping of amajor QTL for resistance to infectious pancreatic necrosis in Atlanticsalmon(Salmosalar):population-level associations betweenmarkers and trait[J] . BMC Genomics,2009,10:368.

[64] Moen T,Hayes B,Baranski M,et al . A linkagemap of the Atlanticsalmon(Salmosalar)based on EST-derived SNPmarkers[J] . BMC Genomics,2008,9:223.

[65] Motoyuki H,Masashi S . Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus usingmicrosatellite DNAmarker[J] . Aquaculture,2003,217:107-114.

[66] Murray V,Monchawin C,England P R . The determination of thesequences present in theshadow bands of a dinucleotide repeat PCR [J] . Nucleic Acids Res,1993.21.2395 -2398 .

[67] Nag D K,White M A,Petes T D . Palindromicsequences in heteroduplex DNA inhibitmismatch repair in yeast[J] . Nature,1989,340:318-320.

[68] Nakamura Y,Leppert M,Connell P,et al . Variable number of tandem repeat(VNTR)markers for human genemapping [J] . Science,1987.2.5(4796):1616.16.2 .

[69] Nei M . Estimation of average heterozygosity and genetic distance from asmall number of individuals[J] . Genetics,1978,89:583-590.

[70] Nei M . Genetic distance between populmions[J] . American Naturalist,1972,106:283-292.

[71] Nomura K,Ozaki A,Morishima K,et al . A genetic linkagemap of the Japanese eel(Anguilla japonica)based on AFLP andmicrosatellitemarkers[J] . Aquaculture,2011,310.329.342 .

[72] O’Connel M,Wright J M . Microsatellite DNA in fishes[J] . Reviews in Fish Biology and Fisheries,1997,7:331-363.

[73] Ozaki A,Okamoto H,Yamada T,et al . Linkage analysis of resistance to Streptococcus iniae infection in Japanese flounder(Paralichthys olivaceus)[J] . Aquaculture,2010,308:S62-S67.

[74] Patricia N,Jose M P,Javier P,et al . PCRmultiplex tool with10microsatellites for the Europeanseabass(Dicentrarchus labrax)-Applications in genetic differentiation of populations and parental assignment[J] . Aquaculture,2010,308:S34-S38.

[75] Pemberton J M,Slate J,Bancroft D R,et al . Nonamp lifying alleles atmicrosatellite loci:A caution for parentage and populationstudies [J] . Molecular Ecology,1995,4:249.2.2 .

[76] Pérez F,Erazo C,Zhinaula M,et al . Asex-specific linkagemap of the whiteshrimp Penaeus(Litopenaeus)vannamei based on AFLPmarkers[J] . Aquaculture,2004,242:105-118.

[77] Perez-Enriquez R,Takagi M,Taniguchi N . Genetic variability and pedigree tracing of a hatchery rearedstock of redsea bream(Pagrusmajor)used forstock enhancement,based onmicrosatellite DNAmarkers[J] . Aquaculture,1999,173:413-423.

[78] Petersen J L,Baerwald M R,Ibarra A M . A first-generation linkagemap of the Pacific lion-pawscallop(Nodipectensubnodosus):Initial evidence of QTL forsize traits andmarkers linked to orangeshell color[J] . Aquaculture,2012,350:200-209.

[79] Pongsomboon,Whan V,Moor S S,et al . Characterization of tri and letranucleotidemicrosatellite in the black tiger prawn,Penaeusmonodon [J] . Science Asia,2000,26:1-6.

[80] Pruitt R,Bowman J,Grossniklaus U . Plant genetics:a decade of integration[J] . Nature Genetics,2003,33:294-304

[81] Puebla O,Parent E,Sevigny J M . Newmicrosatellitemarkers for thesnow crab Chionoecetes opilio(Brachyura:Majidae)[J] . Molecular Ecology Notes,20.3.3(4):644.6.6 .

[82] Ramel C . Mini-andmicrosatellites[J] . Environ Health Perspect105(Suppl).1997,4:781.7.9 .

[83] Ricardo P E,Motohiro T,Nobuhiko T . Genetic variability and pedigree tracing of a hatchery rearedstock of redsea bream(Pagrusmajor)used forstock enhancement,based onmicrosatellite DNAmarker[J] . Aquaculture,1999,173.413.423 .

[84] Rodriguez M F,Lapatra S,Williams S,et al . Geneticmarkers associated with resistance to infectious hematopoietic necrosis in rainbow andsteelhead trout(Oncorhynchusmykiss)backcrosses[J] . Aquaculture,2004.2.1(1):93-115.

[85] Rodzen J A,Famula T R,May B . Estimation of parentage and relatedness in the polyploid whitesturgeon(Acipenser transmontanus)using a dominantmarker approach for duplicatedmicrosatellite loci[J] . Aquaculture,2004,232:165-182.

[86] Sakamoto T,Danzmann R G,Gharbi K,et al . Amicrosatellite linkagemap of rainbow trout(Oncorhynchusmykiss)characterized by largesex-specific differences in recombination rates[J] . Genetics,2000,155:1331-1345.

[87] Sánchez-Molano E,Cerna A,Toro M A,et al . Detection of growth-related QTL in turbot(Scophthalmusmaximus)[J] . BMC Genomics,2011,12:473.

[88] Sbordoni V,De Matthaeis E,Sbordoni C M,et al . Bottleneck effects and the depression of genetic variability in hatcherystocks of Penaeus japonicus(Crustacea,Decapoda)[J] . Aquaculture,19.6.57(1):239-251.

[89] Schorderet D F,Gartler S M . Analysis of CpGsuppression inmethylated and nonmethylatedspecies [J] . Proc Natl Acad Sci USA,1992,89.957.961 .

[90] Sekino M,Saitoh K,Yamada T . Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatcherystrain:implications for hatcherymanagement related tostock enhancement program[J] . Aquaculture,2003,221:255-263.

[91] Sekino M,Sugaya T,Hara M,et al . Relatedness inferred frommicrosatellite genotypes as a tool for broodstockmanagement of Japanese flounder Paralichthys olivaceus[J] . Aquaculture,2004,233:163-172.

[92] Selvamani M J P,Degnan S M,Degnan B M . Microsatellite Genotyping of Individual Abalone Larvae:Parentage Assignment in Aquaculture[J] . Marine Biotechnology,2001,3:478-485.

[93] Senior M L,Chin E C L,Lee M,et al . Simplesequence repeatmarkers developed frommaizesequences found in the GENBANK database,map construction[J] . Crop Science,1997,36:1676-1683.

[94] Shen X Y,Yang G P,Liu Y J,et al . Construction of genetic linkagemaps of guppy(Poecilia reticulata)based on AFLP andmicrosatellite DNAmarkers[J] . Aquaculture,2007,271:178-187.

[95] Staelens J,Rombaut D,Vercauteren I,et al . High-Density Linkage Maps and Sex-Linked Markers for the Black Tiger Shrimp(Penaeusmonodon)[J] . Genetics,2008,179(2):917-925.

[96] Steven C R,Hill J,Masters B,et al . Geneticmarkers in blue crabs(Callinectessapidus)Ⅰ:Isolation and characterization ofmicrosatellitemarkers [J] . Journal of Experimental Marine Biology and Ecology,2005.3.9 :3-14 .

[97] Strauss,William M . Preparation of genomic DNA frommammalian tissues[J] . Current Protocol in Molecular Biology [J] . New York:1989 .

[98] T Thiel,Michalek,W Varshney,et al . A .Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley(Hordeum vulgare L .)[J] . TAG Theoretical and Applied Genetics,2003.1.6(3):411.4.2 .

[99] Timothy R J,Robichaud M D J,Michael E R . Application of DNAmarkers to themanagement of Atlantic halibut(Hippoglossus hippoglossus)broodstock[J] . Aquaculture,2003,220.245.259 .

[100] Toth,Gspri Z,Jurka J . Microsatellites in different eukaryotic genomes:survey and analysis [J] . Genome Reseach,20.0.10(7):967.9.1 .

[101] Truco M J,Antonise R,Lavelle D,et al . A high-density,integrated genetic linkagemap of lettuce(Lactucaspp .)[J] . Theoretical and Applied Genetics,2007,115:735-746.

[102] Urbani N,Sevigny J M,Sainte Marie B,et al . Identification ofmicrosatellitemarkers in thesnow crab Chionoeceies opilio [J] . Molecular Ecology,1998,7:7357-7358.

[103] Van Ooijen J W,Voorrips R E . Join Map:software for the calculation of genetic linkagemaps,version 3 .0 . Wageningen:CPRO- DLO,2001.

[104] Vandeputte M . Selective breeding of quantitative traits in the common carp(Cyprinus carpio)[J] . Aquatic Living Resource,20.3.16(5):399-407.

[105] Vuylsteke M,Mank R,Antoine R,et al . Two high-density AFLP linkagemaps of Zeamays L .,analysis of distribution of AFLPmarkers[J] . Theoretical and Applied Genetics,1999,99:921-935.

[106] Waldbieser G C,Bosworth B G,Nonneman D J,et al . Amicrosatellite-based genetic linkagemap for channel catfish,Ictalurus punctatus[J] . Genetics,2001,158:727-734.

[107] Wallin J M,Holt C L,Lazaruk K D,et al . Constructing universalmultiplex PCRsystems for comparative genotyping[J] . Forensic Sciences,2000,47:52-65.

[108] Wang C M,Lo L C,Zhu Z Y,et al . A genomescan for quantitative trait loci affecting growth-related traits in an F1 family of Asiansea bass(Lates calcarifer)[J] . BMC Genomics,2006,7:274.

[109] Wang S,Basten C J,Zeng Z B,et al . Windows QTL Cartographer2 .0 CP . Raleigh:North Carolina State University,2001.

[110] Weber J L . Informativeness of human(dC~dA)n(dG~dT)n poly-morphisms [J] . Genomics,1990,7.524.530 .

[111] Wilson K J,Li Y,Whan V A,et al . Geneticmapping of the black tigershrimp Penaeusmonodon with amplified fragment length polymorphisms[J] . Aquaculture,2002,204:297-309.

[112] Woolliams J A,Bijma P . Predicting rates of in breeding in populations undergoingselection[J] . Genetics,2000,154:1851-1864.

[113] Wright S . Variability within and among natural populations[M] . Chicago:The University of Chicago Press,1978.

[114] Wringe B F,Devlin R H,Ferguson M M,et al . Growth-related quantitative trait loci in domestic and wild rainbow trout(Oncorhynchusmykiss)[J] . BMC Genetics,2010,11:63.

[115] X . Chen,Salamini,F .Gebhardt,et al . A potatomolecular-functionmap for carbohydratemetabolism and transport[J] . TAG Theoretical and Applied Genetics,2001.1.2(2):284.2.5 .

[116] Xu Z K,Primavera J H,Pena L D,et al . Genetic diversity of wild and cultured black tigershrimp(Penaeusmonodon)in the Philippines usingmicrosatellites [J] . Aquaculture,2001,199:13-40.

[117] Xu Z,Dhar A K,Wyrzykowski J,et al . Identification of abundant and informativemicrosatellites fromshrimp(Penaeusmonodon)genome [J] . Anim Genet,1999,30(2):150.1.6 .

[118] Yan W,Wang X,Wang A,et al . A16-microsatellitemultiplex assay for parentage assignment in the eastern oyster(Crassostrea virginica Gmelin)[J] . Aquaculture,2010,308:S34-S38.

[119] Yap E S,Sezmis E,Chaplin J A . Isolation and characterization ofmicrosatellite loci in Portunus pelagicus(Crustacea:Portunidae)[J] . Molecular Ecology Notes,2002,2(1):30-32 .

[120] Zhang L S,Yang C J,Zhang Y,et al . A genetic linkagemap of pacific whiteshrimp(Litopenaeus vannamei),sex-linkedmicrosatellitemarkers and high recombination rates[J] . Genetica,2007,131:37-49.

[121] 陈蒙,常亚青,孙谦,等 .虾夷扇贝群体的遗传结构及微卫星标记与体尺、体重的相关性分析[J] . 大连水产学院学报,20.9.24(4):311-316.

[122] 池喜峰,贾智英,李池陶,等 .鲤易捕性状选育群体不同世代微卫星分析[J] .上海海洋大学学报,20.0.19(3):308-313.

[123] 崔建洲,申雪艳,杨官品,等 . 红鳍东方鲀基因组微卫星特征分析[J] . 中国海洋大学学报,20.6.36(2):249-254.

[124] 高保全,刘萍,李健,等 .三疣梭子蟹(Portunus trituberculatus)体重遗传力的估计[J] .海洋与湖沼,20.0.41(3):321-325.

[125] 高保全,刘萍,李健,等 .三疣梭子蟹形态性状对体重影响的分析[J] .渔业科学进展,20.8.29(1):44-50.

[126] 高焕,刘萍,孟宪红,等 . 中国对虾基因组微卫星特征分析[J] . 海洋与湖沼,20.4.35(5):424-431.

[127] 胡则辉,周志刚 . 微卫星DNA标记技术及其在海洋生物遗传学中的应用[J] .海洋湖沼通报,2006,(1):37-45.

[128] 简纪常,夏德全 . 鳙小卫星pBC174的序列结构特性分析[J] . 中国水产科学,2.0.9(2):186-189.

[129] 蒋家金,李瑞伟,叶富良 .罗非鱼4个选育群体遗传结构SSR分析[J] .广东海洋大学学报,20.8.28(4):10-14.

[130] 李建林,唐永凯,陈文华,等 .吉富罗非鱼微卫星标记与体质量、体形性状相关性分析[J] .中国水产科学,20.9.16(6):824-832.

[131] 李健,刘萍,高保全,等 .三疣梭子蟹新品种“黄选1号”的选育[J] .渔业科学进展,20.3.34(5):51-57.

[132] 李莉 . 长牡蛎遗传标记的筛选和遗传图谱的构建 [D] . 中国科学院海洋研究所,2003.

[133] 李莉好,喻达辉,黄桂菊 .吉富罗非鱼不同选育群体的遗传多样性[J] .南方水产,20.7.3(5):40-48.

[134] 李莉好,喻达辉 .微卫星DNA标记在水产养殖中的应用[J] .水利渔业,2007,(5):23-25 .

[135] 李晓晖,许志强,潘建林 .中华绒螯蟹人工选育群体的遗传多样性[J] .中国水产科学,20.0.17(2):236-242.

[136] 李晓萍 .三疣梭子蟹微卫星富集文库的构建及五个野生地理群的多样性分析[D] . 中国海洋大学硕士论文,2010.

[137] 刘磊,李健,高保全,等 .三疣梭子蟹不同日龄生长性状相关性及其对体重的影响[J] .水产学报,20.9.33(6):965-972.

[138] 刘磊,李健,刘萍,等 .微卫星DNA标记用于三疣梭子蟹家系亲子关系的鉴定[J] .渔业科学进展,20.0.31(5):76-82.

[139] 刘志毅,相建海 . 微卫星DNA分子标记在海洋动物遗传分析中的应用[J] . 海洋科学,20.1.25(6):1-13.

[140] 栾生,孔杰,王清印,等 . 日本囊对虾基因组小卫星的特征分析[J] . 水产学报,20.7.31(2):137-144.

[141] 罗云,高保全,刘萍,等 . 三疣梭子蟹遗传连锁图谱的初步构建[J] . 渔业科学进展,20.0.31(3):56-65.

[142] 任宪云,刘萍,李健,等 .三疣梭子蟹微卫星多重PCR技术建立及条件的优化[J] .渔业科学进展,20.1.32(3):76-83.

[143] 宋来鹏,刘萍,李健,等 . 三疣梭子蟹(Portunus trituberculatus)基因组微卫星特征分析[J] . 中国水产科学,20.8.15(5):738-744.

[144] 宋来鹏,刘萍,李健,等 . 三疣梭子蟹基因组小卫星特征分析[J] . 水产学报,20.8.32(6):852-860.

[145] 宋来鹏,刘萍,李健,等 .三疣梭子蟹基因组微卫星特征分析[J] .中国水产科学,20.8.15(5):738-744.

[146] 宋来鹏,刘萍,李健,等 .三疣梭子蟹基因组小卫星特征分析[J] . 水产学报,20.8.32(6),838-846.

[147] 孙少华,桑润滋,师守堑.肉牛杂交优势预测、评估及其应用研究[J] . 遗传学报,20.0.27(7):580-589.

[148] 孙新,魏振邦,孙效文,等 .镜鲤繁殖群体的遗传结构及微卫星标记与经济性状的相关性分析[J] .遗传,20.8.30(3):359-366.

[149] 孙昭宁,刘萍,李健,等 . 微卫星DNA技术用于中国对虾家系构建中的系谱认证[J] .中国水产科学,20.5.12(6):694-700.

[150] 孙昭宁,刘萍,李健,等 .微卫星DNA标记用于中国对虾亲子关系的鉴定[J] .海洋水产研究,2007,28:8-14.

[151] 王国良,金珊,李政,等 . 三疣梭子蟹养殖群体同工酶的组织特异性及生化遗传分析[J] . 台湾海峡,20.5.24(4):474-480.

[152] 王鸿霞,张晓军,李富花,等 .应用微卫星标记分析野生中国明对虾的亲权关系[J] .水生生物学报,20.8.32(1):42-46.

[153] 王杰,华太才让,欧阳熙,等 . 藏山羊微卫星DNA多态性研究[J] . 西南民族大学学报:自然科学版,20.6.32(5):538-544.

[154] 谢建云,邵伟娟,高诚.多重PCR在几个近交系小鼠遗传检测中的应用初探[J] .中国实验动物学报,20.3.11(2):92–95.

[155] 谢丽,陈国良,叶富良,等 .凡纳滨对虾4个选育群体遗传多样性的SSR分析[J] .广东海洋大学学报,20.9.29(4):5-9.

[156] 徐鹏,周令华,相建海 . 中国对虾微卫星DNA的筛选[J] . 海洋与湖沼,2001,32(3):255-259.

[157] 战爱斌,包振民,陆维 .仿刺参的微卫星标记[J] .水产学报,20.6.30(2):192-196.

[158] 张天时,刘萍,孔杰,等 . 中国对虾微卫星DNA引物的设计及筛选[J] . 中国水产科学,20.4.11(6):567-571.

[159] 张志允,李思发,蔡完其 .中华鳖黄河群体选育世代F1、F2及F3遗传变异微卫星分析[J] .上海海洋大学学报,20.1.20(2):161-166.

[160] 赵广泰,刘贤德,王志勇 .大黄鱼连续4代选育群体遗传多样性与遗传结构的微卫星分析[J] .水产学报,20.0.34(4):500-507.

[161] 钟金城,陈智华 .分子遗传学与动物育种[M] .成都:四川大学出版社,2001.

[162] 朱广琴,王利心,孙瑞萍,等 .6个微卫星基因座与西农萨能奶山羊产羔数相关性的研究[J] .中国农业大学学报,20.8.13(3):63-69.

[163] 朱晓东,耿波,李娇,等 .利用30个微卫星标记分析长江中下游银鲫群体的遗传多样性[J] .遗传,20.7.29(6):705-713.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈