首页 百科知识 海洋与环境

海洋与环境

时间:2022-01-17 百科知识 版权反馈
【摘要】:1979年12月15日,北海海域又遭受了一次特大风暴的袭击,狂风以每小时90公里的速度席卷海面,掀起的巨浪高达15米。1933年1月6日,美国海船“拉马波”号在菲律宾至美国西海岸的太平洋中航行时,测到的海浪高达34米,当时风速达每小时126公里,这是目前人们观测到的世界海洋中最高的风浪。在环太平洋地震带的太平洋西北部海域,更是发生地震海啸的集中区域。
海洋与环境_新时代的海洋工程

第五章 海洋与环境

海 浪

坐过海轮和到过海边的人,都会发现,辽阔的海洋几乎没有平静的时候,即使在风平浪静的日子里,大海也是微波涟漪,不会真正地静下来。至于惊涛骇浪,那种躁动的力量,则不得不令人叹服。

在美国西部太平洋沿岸的哥伦比亚河入海口附近,有一座高高的灯塔,旁边的小屋里住着一个灯塔看守人。1894年12月的一天,一个黑色怪物突然击穿屋顶迅猛地撞了下来。吓坏了的看守人,哆哆嗦嗦地走近黑色怪物一看,原来是一块重达64千克的大石头。

经过勘察和专家的细心研究,发现这块石头是被巨大的海浪卷到40米的高空后,又不偏不倚地砸到了看守人居住的小屋上,演出了飞石穿顶的惊险一幕。

海浪能有那么大的力气吗?海洋学家的回答是:有。据测定,海浪拍岸时给海岸的冲击力每平方米可达20—40吨。大的甚至可达50—60吨。巨浪冲击海岸时,能激起60—70米高的浪花。在英国苏格兰的威克港,一次大风暴中,巨浪曾将1370吨重的混凝土块移动了10多米;斯里兰卡海岸上的一座高60米的灯塔,也曾经被印度洋袭来的海浪打坏;有人看到过一个巨大的海浪甚至把13吨重的巨石抛到10米高的空中。

1952年12月16日,一艘美国轮船正航行在地中海意大利西部附近的海面上。此时正值狂风大作,突然,船上爆发出一声震耳欲聋的巨响,整个船体在瞬间被折成两半。一半被抛上了海岸,重重地落在沙滩上;另一半连同14名船员一起被冲入大海,葬身鱼腹。

这次海难事故发生后,引起了人们的普遍关注。经过反复的调查研究,排除了人为破坏的种种可能,终于找到了真正的罪魁祸首,原来就是海浪。

说到这里,你想必该明白了,那块落入灯塔看守人小屋里的石头,对于力大无穷的海浪来说,难道不是一个任其玩弄于股掌之上的小小玩物吗?

咆哮的西风带

俗话说:“无风不起浪”。这形象地说明了风与浪的密切关系。这种因风而引起的波浪,也称风浪。

世界海洋上有许多著名的风暴区,风急浪高,推波助澜,给航行带来很大困难。太平洋、南印度洋、孟加拉湾、阿拉伯海、墨西哥湾、北海以及南非好望角附近海域,都是以风浪著称的海区。

位于南半球中高纬度的南非好望角附近海区,正处在著名的“咆哮的西风带”,在强劲的盛行西风控制下,全年约有100多天浪高都在6米以上,特大的巨浪高15米左右,是世界上风浪最大的海区之一。过去,这里曾被称为“风暴角”,后来,才改名为“好望角”。

位于欧洲大陆与大不列颠岛之间的北海,也经常有风暴发生和巨浪出现。风暴期间,北部风浪高达8—10米,南部也达6—7米。1949年和1953年曾发生了两次特大风暴潮,出现过危害很大的风浪。1953年1月31日那一次风暴,掀起十几米高的巨浪,水位比平均高潮水位高出3.7米,致使荷兰西海岸和英国东海岸许多地方被海水淹没,2000多人丧失生命。1979年12月15日,北海海域又遭受了一次特大风暴的袭击,狂风以每小时90公里的速度席卷海面,掀起的巨浪高达15米。这次大风暴,除造成船只遇难外,还使沿岸的港口设施和居民的生命财产遭受极大的损失。

世界上最高的风浪可以超过30米,船只航行中遇到它是十分危险的。

1956年4月2日,前苏联考察船曾在澳大利亚东南部麦阔里岛以南600公里的海面上,拍摄到浪高24.9米的壮观的风浪照片。1933年1月6日,美国海船“拉马波”号在菲律宾至美国西海岸的太平洋中航行时,测到的海浪高达34米,当时风速达每小时126公里,这是目前人们观测到的世界海洋中最高的风浪。

无风三尺浪

看到这个小标题,你也许会想,这不是与前面提到的“无风不起浪”自相矛盾吗?然而,这两种说法都有道理。

居住在西部印度群岛小安的列斯群岛上的居民,经常在风和日丽的时候,看见海岸边上也出现很高的波浪,有时浪高竟达6米以上,而且可以持续两天或更长一点的时间。他们都不明白是怎么回事。后来,经过科学家长期的观察和研究,发现这些波浪并不是当地“土生土长”出来的,而是从大西洋遥远的中纬海区“邮递”过来的。

原来,风浪在形成过程中获得大量的能量,风停以后,波浪仍可继续向前传播,有时甚至能传到很远的无风区去。这就是在风和日丽的条件下也能涌起巨浪的缘故。所谓“无风三尺浪”、“风停浪不停,无风浪也行”,就是这个道理。这种在风停止、减弱或转向以后所残存的波浪,以及从远处传到无风海区的波浪,就叫做涌浪,也称为长浪。

风浪的传播速度很快,涌浪的传播速度更快。涌浪可以日行千里,远渡重洋,传播到很远的海区去。因此,涌浪也会“跑”在风暴前头,向人们报告“风暴随后就到”的信息。在晴朗的日子里,海面上如果发现涌浪,而且浪越来越急,越来越大,就可能有强烈活动的气压中心正在向这里移近。例如,在我国的东海沿岸,当台风中心在400海里之外的太平洋上向海岸移动时,当地即可以观察到由台风中心传出来的涌浪。所以在海滨广泛流传着一句谚语:“无风来长浪,不久狂风降。”

前面我们讲的海浪,都发生在海洋的表面,那么,在海洋深处有没有波浪现象发生呢?

海洋水是具有连续性和黏滞性的巨大水体,海面发生运动形成波浪时,波浪会向下传播。只是,由于海水深度的增加,波动的阻力也随之增大,能量逐渐消耗,波浪逐渐变小,以至全失。一般说,波浪运动传播的深度多为400米左右。所以尽管海洋表面巨浪滔天,深海水仍然是一片宁静的。

在某些海域,虽然海洋表面没有波浪,但深海内部却有较强的水体波动现象,被人们称为内波,应该指出的是,这种内波与发生在海面上的波浪是根本不同的。

可怕的海啸

当我们盛赞“大海是个聚宝盆”、“大海是个药材库”的时候,切莫忘了,大海发起狂来也很可怕,比如说海啸。海啸,是一种特殊的海浪,是由火山、地震或风暴引起的一种海浪。海啸波,在大洋中不会妨碍船只的正常航行,但近岸时却能量集中,具有极大的破坏力。

由于海底或海边地震,以及火山爆发所形成的巨浪,叫做地震海啸。通常在6.5级以上的地震,震源深度小于20—50公里时,才能发生破坏性的地震海啸。产生灾难性的海啸,震级则要有7.8级以上。

世界上有记载的由大地震引起的海啸,80%以上发生在太平洋地区。在环太平洋地震带的太平洋西北部海域,更是发生地震海啸的集中区域。海啸主要分布在日本环太平洋沿岸,太平洋的西部、南部和西南部、夏威夷群岛,中南美和北美沿岸等地。世界上最常遭受海啸袭击的国家和地区,主要有日本、印度尼西亚、智利、秘鲁、夏威夷群岛、阿留申群岛、墨西哥、加勒比海地区、地中海地区等。我国是一个多地震的国家,但发生海啸的次数并不多。

1883年,在东南亚的巽他海峡中,由于喀拉喀托火山喷发,产生了一次极强的海啸,掀起的巨浪高达35米,使印度尼西亚岛屿沿岸遭到严重破坏,同时毁坏了巽他海峡两岸的1000多个村庄。巨浪迅速在大洋中传播,急速穿过印度洋,绕过非洲南端的好望角进入大西洋,仅32个小时就传到英国和法国的沿海地带,其距离大约相当于地球圆周一半的路程。这次海啸,也使东印度群岛遭到惨重的损失。

1946年4月1日凌晨,夏威夷群岛万籁俱寂,憩睡的人们正在享受美梦的甜润。突然,海水奔腾咆哮地猛冲上来,使海岸边较高的地方也被海水吞没,几分钟后海水又迅猛地溃退而去,以至平时不见天日的海底珊瑚礁也露了出来,成片来不及逃走的鱼儿搁浅在海滩上乱蹦乱跳;15分钟后,海水以比第一次更凶猛的势头再一次猛扑上岸,人们清楚地看到一堵高大直立的“水墙”迅速地向前推进。如此来回数次,三个小时后,海面才恢复了平静。这次海啸给夏威夷带来深重的灾难,使163人死亡,大批房屋倒塌,海水深入内陆1公里以上,海港中停泊的一艘17000吨海轮被抛到岸上,一块重约13吨的石头被抛到20米以上的高空。估计经济损失达2500万美元。这次海啸是相距数千公里的阿留申海域海底地震爆发引起的,海啸波每小时推进约820公里,到群岛沿岸浪高达8米。

1960年5月,南美洲智利沿海海底爆发了多次强烈的地震,从而引起了一次震惊世界的海啸。这次海啸,在智利沿岸抛起10米高的波浪,使南部320公里长的海岸遭难。海啸还以每小时700公里的惊人速度,用不到一天的时间传到太平洋的西岸。致使日本群岛的东海岸沿岸遭受到严重破坏。在海啸浪涛的袭击下,共有1000多户房屋被卷走,2万公顷土地被淹没,有的海船被掀到了岸上。

有的海啸是由台风、强低压、强寒潮或其他风暴引起的巨浪,称为风暴海啸,在世界大洋中,印度洋的孟加拉湾沿岸,是世界上风暴海啸危害最严重的地区。例如,1970年11月12日,印度洋上的飓风袭击了孟加拉沿岸,席卷了整个哈提亚岛,波浪高达20米,夷平了很多村落,50多万头牲畜被海水溺死,并使30万余人丧生,100万人无家可归。

目前,人们发现的世界上最高的海啸,是在美国阿拉斯加州东南的瓦尔迪兹海面上由地震引起的海啸,浪高达67米,大约相当于20层楼之高!

造成海啸最主要的原因是海底地壳发生了断裂,有的地方下陷,有的地方上升,引起强烈的震动,产生出波长特别长的巨大波浪,传到岸边或海港时,使水位暴涨,冲向陆地,产生巨大的破坏作用。1923年9月1日著名的日本大地震发生时,横滨就受到过海浪的冲击,几百座房屋被带进海里。事后发现,那里附近的海底不仅断裂开来,而且有巨大的移动,隆起与下陷的部分高度相差达270米,难怪造成了恶浪滔天的景象。

海底火山喷发也会造成海啸。像1983年,爪哇附近喀拉喀托岛上的火山喷发时,在海底裂开了300米深的坑,激起的海浪高达35米,造成极其惨重的损失。水下火山的喷发,还会使海水沸腾,使大量的鱼类和海洋生物遭到灭顶之灾。

因海斜坡上的物质失去平衡而产生的海底滑坡现象,也能引起海啸。另外,受到风暴袭击时,海面可升到异乎寻常的高度,产生“风暴海啸”。我国北方沿海就受到过寒流海啸的袭击,东南沿海也常受到台风海啸的袭击。

人类活动也能造成海啸,比如试验核武器时,巨大的水下核爆炸同样能引起海啸。不过能量要小得多,不至于造成大的灾难。

海浪,特别是巨浪和海啸,给人们的生产和生活带来极大的危害,那么,人们能不能赶在危害到来之前,就比较准确地预报海浪消息,从而最大限度地减少或免除灾难呢?回答是肯定的。

海浪预报是根据影响海浪的生成、发展和消衰的各种条件,结合海浪的基本状态进行计算而作出的。比如说,海啸波的传播速度比海啸浪的前进速度快得多,人们便可以依据监测到的海啸波的情况作出判断和预报。目前海浪预报尚不十分完善。但是尽管如此,人们借助于已有的监测手段,已经能够在很大程度上减少海啸带来的危害了。

洋 流

海洋中的海水,按一定方向有规律地从一个海区向另一个海区流动,人们把海水的这种运动称为洋流,也叫做海流。

海流与河流是不一样的。海流比陆地上的河流规模大,一般长达几千公里,比长江、黄河还要长,宽度则相当于长江最宽处的几十倍甚至几百倍。

河流两岸是陆地,河水与河岸,界限分明,一目了然;而海流在茫茫大海中,海流的“两岸”依然是滔滔的海水,界限不清,难以辨认。

海洋中的这种“河流”,曾经协助过许多航海者。哥伦布的船队,就是随着大西洋的北赤道暖流西行,发现了新大陆;麦哲伦环球航行时,穿过麦哲伦海峡后,也是沿着秘鲁寒流北上,再随着太平洋的南赤道暖流西行,横渡了辽阔的太平洋。

海洋中的这种“河流”,还可以为人们传递信息。航行在海洋上的船员,有时把装有各种文字记录的瓶子投进海洋,就好像陆地上的人们把信件投入绿色的邮筒一样。这种奇异的“瓶邮”,为人类认识洋流、传送情报做出过重大贡献,也发生过许多非常有趣的故事。

1956年的一天,美国的一个叫做道格拉斯的年轻人,从佛罗里达州的海港驾着游艇驶向大海,打算在海上玩个痛快。他的妻子则在家里准备了一顿丰盛的晚餐,等待着他的归来。可是,他这一去便杳无踪影,尽管海岸防卫队出海反复搜寻,也没有发现任何线索。

两年后,美国佛罗里达州的有关部门突然收到一封来自澳大利亚的来信。打开一看,里面有一封信和一张没有填上数字的银行支票,支票上的签名正是失踪的道格拉斯。支票上的附言写道:“任何人发现这张字条,请将此支票连同我的遗嘱寄往美国佛罗里达州迈阿密海滩我的妻子雅丽达·道格拉斯收。由于引擎出故障,我被吹向了远海。”信上说,支票和附言是在澳大利亚悉尼市北部的阿伏加海滩上一个封紧的果酱瓶子里发现的。

美国的佛罗里达海岸距离澳大利亚的悉尼,大约有4.8万公里。小小的果酱瓶,横渡辽阔的大西洋漂到非洲,再横渡印度洋进入太平洋,最后来到遥远的澳大利亚海滨。

再看下面这个故事。

1980年,我国海洋科学工作者去南太平洋进行了一次科学考察。返航途中,横渡赤道时,考察船上有一位名叫周镭的科学工作者,突然想起人们在海上用瓶子传递信息的事,便急忙给妻子写了一封信。

他把写好的信装进信封,在右角上贴了一张印有五星红旗图案的邮票,并在左上角画了一个箭头指向“中国”二字,还用英语和俄语加以注明,然后把信装进一个啤酒瓶内,用白蜡密封,在考察船穿过赤道的时候投入茫茫的大海。

两个多月后,周镭返回了祖国。除开茶余饭后的话题之外,谁也没把投瓶的事放在心上。不料有一天,他突然收到来自巴布亚新几内亚的一封来信,打开一看,是一位中国血统的名叫陈国祥的先生寄来的。信中除了有周镭写给他妻子玉萍的家书外,陈先生还附有一封热情洋溢的书信。信中不仅讲明了周镭家书拾到的时间、地点和过程,还提到他与祖国的血肉关系,并希望今后加强联系。

不言而喻,这两个故事中的邮递员,都是前面我们提到的洋流。

不过,洋流邮递只是人们在万般无奈的情况下的一种碰运气的举动,实际上是常常靠不住的。1498年,哥伦布为了解脱航行中的困境,曾在一张羊皮纸上给西班牙国王写了一份报告,装在一个椰子壳里投入大海,希望海流迅速把它带到西班牙去。可是,海流把它漂到大西洋比撕开湾的一个荒滩上,直到1856年才被人们发现,整整延误了358年!

今天,海洋里还漂着许多载有各种信息的瓶子,不过大多是为了研究海流而由科学工作者投放的。假如你有幸在海边拾到这样的“邮瓶”,并回答了里面的问题,把卡片寄给了投放者,那你就成为一名协助科学工作者研究海流的有功之臣了。

洋流来自何方

经过研究,人们发现,洋流既可以是一支浅而狭窄的水流,仅仅沿着海洋表面流动,也可以是一股深而广阔的洪流,数百万吨海水一齐向前奔流。

影响洋流形成的因素很多,通常认为,主要是风“玩”的把戏,其次是海水密度不同的作用,而地球的自转、大陆轮廓和岛屿的分布、海底的起伏、季节的变化和江河入海的水量等等,也对洋流的形成与分布产生不小的影响。

你想想,如果风总是朝着一个方向吹,那么会怎样呢?盛行风在海洋表面吹过时,风对海面的摩擦力,以及风对波浪迎风面施加的风压,迫使海水顺着风的方向在浩瀚的海洋里作长距离的远征,这样形成的洋流称为风海流。风海流也叫漂流,是洋流系统中规模最大、流程最远的洋流。同时,受地球自转偏向力的影响,表面海水的流动方向则与风向发生偏离,北半球表面洋流的流向偏往风向的右方,而南半球则偏向左方,即北半球向右偏,南半球向左偏。

表面海水的流动,由摩擦力带动了下层海水也发生流动;由于自上而下的层层牵引,深层海水也可以流动。只是流速受摩擦力的影响越来越小。到达某一深度时,流速只有表面流速的4.3%左右。这个深度就是风海流向深层水域影响的下限,称为风海流的摩擦深度,大洋中一般在200—300米深处。例如,表面洋流的流速若是50厘米/秒,这个深度上的流速仅为2厘米/秒。

海洋表面风力越强,风速越大,表面风海流的流速就越大,它所能影响的深度也越大。

由于海水密度在水平方向上分布不均匀而产生的海水流动,称为密度流。

世界上一些著名的洋流,如湾流、黑潮、赤道流等,都是与海洋水密度分布有关的洋流。而大西洋与地中海之间,地中海与黑海之间,分别通过直布罗陀海峡和土耳其海峡的水体交换,更是因盐度差异而形成密度流的典型例子。

海水具有连续性和不可压缩性,一个海区的海水流出,相邻海区的海水就要来补充,这样形成的洋流称为补偿流,补偿流既有水平方向的,也有垂直方向的。例如,在离岸风的长期吹送下,表层海水离开海岸,相邻海区的海水就会流到这个海区,形成水平方向上的补偿流;同时,下层海水也上升到海面,来补偿离岸流去的海水,形成垂直方向上的上升流。上升流在大陆的西海岸比较明显,秘鲁和智利海岸、加利福尼亚海岸、非洲的西南和西北海岸都有分布。洋流在表层流动遇到海岸或岛屿时,不仅在水平方向上发生分流,而且在垂直方向上产生下降流和底层流。补偿流常常配合风海流和密度流,形成大洋表层巨大的环流。

海洋上,洋流的形成往往是多方面因素综合作用形成的,上面分成的三种类型,有时是很难严格地加以区别的。

根据洋流的温度,可以分为性质不同的暖流和寒流。洋流的水温比流经海区水温高的称为暖流,水温比流经海区水温低的称为寒流。暖流大多发源于低纬海区,从较低纬度流向较高纬度,一般水温较高,盐度较大,含氧量较低,浮游生物的数量较少,海水透明度较大,水色大多发蓝。寒流大多发源于高纬海区,从较高纬度流向较低纬度,一般水温较低,盐度较小,含氧量较高,浮游生物数量较多,海水透明度较小,水色多呈暗绿色。通常,在北半球,由南向北流的是暖流,从北向南流的是寒流,南半球则正好相反。

此外,根据海洋的垂直分布状况,还可以分为表层洋流和深层洋流;根据洋流流向流速的变化大小,还可以分为稳定流和非稳定流,一般我们常说的洋流,大多是指稳定流。

黑潮、亲潮和秘鲁寒流

太平洋纵贯南北半球,是世界上面积最大的大洋,在赤道至南北纬40°—50°的范围内,南北各有一个大洋环流。

北太平洋的北赤道洋流,长达14000公里,宽数百公里,平均每天流动距离约35公里。北赤道洋流大致从中美洲西部海域开始,向东向西流动,至菲律宾群岛,主流沿群岛东侧北上,形成黑潮。

黑潮是北赤道洋流的延续,温度高,盐度大,水色呈现蓝黑色,透明度大,是世界上仅次于湾流的第二大暖流。

黑潮全长约6000公里,宽约200—350公里,厚度平均约400米,最长厚度可达1000多米,流速50—250厘米/秒,大致每昼夜可流动60—90公里,水面的温度夏季约29℃—30℃,即使是严寒的冬季,水温也在20℃以上。黑潮在东海时的流量约为长江流量的1000倍,相当于世界河流总流量的20倍,浩浩荡荡,奔流不息,是太平洋西部引人注目的一股暖流。

亲潮发源于白令海峡,沿堪察加半岛海岸和千岛群岛南下,又称为千岛寒流。亲潮比黑潮规模小,流至北纬30°—40°附近海区,与黑潮汇合,折向东流,并与阿拉斯加暖流共同组成反时针方向流动的副极地环流。

秘鲁寒流从南纬45°左右的西风流开始,经智利、秘鲁、厄瓜多尔等国沿海北上,直达赤道海域的加拉帕戈斯群岛附近,流程长达4500多公里,是世界大洋中行程最长的一支寒流。它的平均宽度在智利海岸附近为180多公里,秘鲁沿海为450多公里,流速每昼夜约11公里,水温在15℃—19℃之间,比邻近海区的水温低7℃—10℃,是世界著名的寒流之一。

庞大的“暖水管”

大西洋的赤道南北,也有两个与太平洋位置大体相似的大洋环流。

北大西洋的北赤道洋流,大致从佛得角群岛开始,沿北纬15°—20°之间自东向西流动,至安的列斯群岛附近,称安的列斯暖流。南大西洋的南赤道洋流,从非洲沿岸流向美洲沿岸,到南纬7°附近巴西东部向东突出的罗克角,分为南、北两支。在大西洋南北两个环流中,以墨西哥湾暖流最著名。墨西哥湾暖流,又简称湾流,是世界大洋中宽度最大、流程最长、水温最高、影响最深远的暖流。习惯上,人们把佛罗里达暖流、墨西哥湾暖流和北大西洋暖流,合称为一个湾流系统。

这个规模巨大的湾流,总流量为7500—10000万立方米/秒,比黑潮暖流大近一倍,几乎相当于世界陆地上所有河流总流量的40倍。

湾流汇聚了大西洋南北两股赤道洋流,又在加勒比海和墨西哥湾内流动了较长的时间,成为热量丰富的强大暖流。据测量和计算,每小时约有900亿吨温暖的海水从墨西哥湾流入大西洋;湾流每供给英吉利海峡1米长海岸线的热量,约相当于燃烧6万吨煤的热量;每年带给挪威沿海的热量,约相当于这里太阳辐射量的1/3左右,用这些热量可以发出强大的电能,假如用石油作燃料生产同样多的电能,那么,平均每分钟必须有一艘10万吨级的油轮,不间断地为发电厂运油加添油料。可见,湾流的热量非常庞大,人们形象地称它为永不停息地输送热量的“暖水管”!

庞大的“暖水管”,使流经地区的水温和气温显著上升。这样,西欧和北欧的西部,便形成了典型的温带海洋性气候。所以,西北欧的斯堪的纳维亚半岛上生长着郁郁葱葱的针叶林和混交林,而北美东北部的格陵兰岛则绝大部分是白雪皑皑的冰封世界。湾流对西北欧气候的影响,以冬季为最明显。

挪威西部沿海1月平均气温为0℃左右,北极圈内的巴伦支海西南部终年不封冻,位于北纬69℃附近的苏联科拉半岛的摩尔曼斯克,成为举世罕见的高纬地区的不冻港。你如果到那一带地区去,会发现许多奇特的自然现象:那里有南面吹来的凛冽寒风,有北方刮来的习习暖气;有夏季纷纷飘扬的六月雪,有冬天阴云缠绵的元月雨;有大雁春天向南飞行,海鸥则秋天向北展翅。

受湾流的影响,北大西洋东西两侧海域,气候迥然不同;英国设得兰群岛以东海域,1月平均气温约为3.4℃;而同纬度的加拿大拉布拉多半岛东北海域,却为-19℃,二者相差22.4℃!

“转向”环流和北冰洋洋流

印度洋的大洋环流,受地理环境的影响,南、北具有不同的组成和特点。

印度洋南部的大洋环流比较稳定。低纬海区在盛行东南信风的吹送下,南赤道洋流自东向西横过印度洋。势力强大,流向稳定。而印度洋北部因受大陆限制和季风环流的影响,冬夏洋流要“转向”,形成随着季节转换而变换流向的洋流系统。从10月到第二年4月,这里受东北季风的影响,北部海水自东向西流动,形成反时针方向的冬季环流,尤以12月和1月表现得最为明显。从5月到9月,这里受西南季风的影响,北部海水自西向东流动,形成顺时针方向的夏季环流,尤以7月和8月最为典型。

北冰洋地处高纬,面积最小,气候严寒,冰覆盖广,即使是夏季,冰雪覆盖的面积也在2/3左右。那么,北冰洋里有没有洋流呢?回答是:有。

北大西洋暖流有一支流向东北。同时,北冰洋海水经过格陵兰岛附近海域,分别形成拉布拉多、东格陵兰等寒流。这样,组成了北冰洋这一海域反时针的大洋环流。

洋流的“功”与“过”

总的来说,洋流对气候、海洋交通、海洋生物、海洋沉积和海洋环境等方面都有巨大的影响,其中有“功劳”也有“过失”。

洋流对气候的影响很大,它不仅使沿途气温增高或降低,延长或缩短暖季或寒季的持续时间,而且能够影响降水量的多少和季节分配。

北太平洋西部的黑潮暖流,尽管没有贴近亚洲大陆边缘流动,但对中国的气候却有明显的影响,有这样几件事引人深思:1953年,黑潮的平均位置向南移动了大约170公里,第二年,我国的江淮地区雨水滂沱,出现了百年未见的水灾;1957年和1958年,黑潮的平均位置又较之往年北移了,结果1958年,我国的长江流域梅雨减少发生旱灾,而华北地区大雨倾盆形成水灾。

有些科学工作者研究了黑潮变动与旱涝灾害的相互关系,发现中国东部沿海地区的气候受黑潮暖流的影响很大。

洋流还可以影响海洋生物资源的分布。在寒、暖流交汇的海区,海水受到扰动,可把下层丰富的营养盐类带到表层,使浮游生物大量繁殖,各种鱼类到此觅食。同时,两种洋流汇合可以形成“潮锋”,是鱼类游动的障壁,鱼群集中,形成渔场。在有明显上升流的海域,也能形成渔场。此外,洋流的散播作用,是对海洋最直接和最重要的影响,它能散布生物的孢子、卵、幼体和许多成长了的个体,从而影响海洋生物的地理分布。

鳗鲡,是生活在欧洲河流和湖泊中的一种鱼类,体型圆长,又粘又滑,样子似蛇。人们发现,它们虽然生活在淡水中,可秋季完全成熟以后,就成群结队地离开淡水到大洋中产卵,繁殖后代。鱼群游向大海的意志非常坚决,当沙洲挡住去路时,它们会趁黑夜跃上河岸,在洒满露水珠的草地上滑行,绕过障碍重新跃入水中,继续勇敢地向前游去。人们又发现,每年春季长仅6—7厘米的小鳗,又成千上万地从欧洲沿海涌入河川之中生活。几个世纪以来,关于鳗鲡到哪里产卵,小鳗又怎样游回河湖之中,一直是个费解的谜。

本世纪初,有人在地中海发现了一种透明的叶片状小鱼,经研究是鳗鲡的子鱼。根据这个线索,海洋生物学家从1904年开始,进行了长期的调查工作。

他们在北大西洋不同地点,采集了数百个浮游生物的样品,发现鳗鲡仔鱼的个体,自东向西逐渐变小,到百慕大岛的东南方海域,个体长度还不足1厘米,这就是鳗鲡洄游4000—5000公里而集中“生儿育女”的场所。同时刚孵化出来的幼鳗又必须从降生地开始,游经遥远的路程,到欧洲大陆的淡水中生长。这种游泳能力很弱的幼鳗,很难靠自己的力量完成漫长的游程。它们就借助北大西洋暖流缓缓东去,大约经过3年左右的时间,幼鳗才能到达欧洲沿岸,此时幼鳗已发育成小鳗,于是进入河川栖息。在淡水中生活5—8年以后的鳗鲡,又要奔向新的征程,再游到海洋中产卵。可见,强大的湾流系统,已成为欧洲鳗鲡生活周期不可缺少的条件。

洋流对海洋航运也有显著的影响。一般,顺着洋流航行的海轮,要比逆着洋流行进的海轮速度明显加快。例如,1492年,哥伦布第一次横渡大西洋到美洲,用了37天才到达大洋彼岸;1493年,哥伦布再次作环球旅行,从欧洲出发后,他先向南航行了10个纬度,然后再向西横渡大西洋。结果,只用了20天就完成了横渡的全部航程,其实是洋流帮了他的大忙。原来,第一次航行时,哥伦布的船队是从加那利群岛出发,逆着北大西洋暖流航行的,所以,航速较慢;第二次航行时,先是顺着加那利寒流向南航行,然后又顺着北赤道洋流一直向西。同时,哥伦布船队远航时,正好偶然进入了盛行的东北信风带,顺水顺风,速度自然比较快。

人们认识和掌握了洋流的特点,可以把洋流运行的规律应用到航运上,从而节约航运时间,缩短运转周期,节约燃料和减少不必要的海上事故。潜艇还可以利用表层和深层洋流潜航。

当然,有的洋流给海上航运也带来了不少麻烦。例如,北大西洋西北部从加拿大北极群岛与格陵兰岛附近海域南下汇聚成的拉布拉多寒流,在纽芬兰岛东南海域同墨西哥湾暖流相遇。冷暖海水交汇,使这里经常存在一条茫茫的海雾带。它还从北冰洋或格陵兰海每年带来数百座高大的冰山,有许多漂浮着进入湾流或北大西洋暖流中,给海上航行带来严重的威胁。

此外,陆地上许多污染物随着地表流入大海,洋流可以把污染物携带到更加广阔的海洋之中,从而扩大海洋污染的范围,以致造成更大的灾害。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈